

Altair 88-ADC and MUX

Addenda, October, 1977

1. Page 9.

ADDITION:

To use more than one MUX board in a system, jumpers must be installed to decode the board select address signals on lines MA5, MA6 and MA7 (see Figure 3-4, sheet 2). These jumpers are installed at the center of the board near the edge connector. The six pads at the right carry the address signals (labelled A5, A6 and A7) and their inverses (not labelled, but designated $\overline{A5}$, $\overline{A6}$ and $\overline{A7}$). On the left are the three inputs of NAND gate IC H.

To set the board address, install the jumpers according to the following table.

Board Address	Channels	Connect IC H Inputs to		
		Тор	Middle	Bottom
0*	0 - 23	A5	ĀG	Ā7
1	24 - 47	A5	ĀG	Ā7
2	48 [,] - 71	A5	A6	Ā7
3	72 - 95	A5	A6	Ā7

*Board O need not be jumpered, since the inputs of IC H float HIGH when they are not connected to anything.

2. Page 20.

ADDITION:

The program given on this page works only for systems with one MUX board installed. Because of the way the board select addresses are decoded (see page 9), constants must be added to the channel numbers in order to generate the proper addresses. The following table shows the modifications to be made:

Board	Channels	Add to CN (line 70)
1	24 - 47	8
2	48 - 71	16
3	72 - 95	24

L

J	Section Page
	List of Tables.
	List of Programs
	I. INTRODUCTION
-	1-1. Scope and Arrangement. 3 1-2. Description. 3 1-3. Specifications 4
	II. OPTIONS
•	2-1.Introduction92-2.Multiplexer.92-3.88-ADC A/D Module Input Voltage Ranges132-4.88-ADC Input Ranges Using Multiplexers142-5.88-MUX Gain.142-6.88-ADC Input Buffer Amplifier.192-7.Zero Adjustment.192-8.Software212-9.MOS IC Special Handling Precautions.32
	III. THEORY OF OPERATION
~	3-1. General. 35 3-2. Logic Circuits 35 3-3. 38-ADC Input Buffer Amplifier. 37 3-4. A/D Module 37 3-5. Control Signals. 39 3-6. 88-MUX 24-Channel Multiplexer. 42 3-7. PIA Initialization and Data Interpretation 42
	IV. TROUBLESHOOTING
	4-1. Introduction 47 4-2. Visual Inspection Check List 47 4-3. General Check 50 4-4. Preliminary Check 50 4-4. Preliminary Check 51 4-5. MUX Isolation Test 52 4-6. Cable Check (24-Channel System) 54 4-7. A/D Channel Code Check 54 4-8. 38-MUX Check (4051) 56 4-9. 88-MUX Input Buffers 56 4-10. Power Supply Voltages on the 88-ADC Board 57 4-12. Input Buffer Circuit 57 4-13. PIA Check 58 4-14. Control Circuitry Check. 59 4-15. 8-Channel Multiplexer Systems 62 4-16. A/D Channel Code Code (88-ADC) 63

Table of Contents - Continued Section Page V. APPLICATIONS 5-1. 67 5-2. 67 68 69 70 List of Tables Number Page 2-A. 14 2-8. 88-ADC Input Ranges Using Multiplexers. 15 3-A. 36 3-8. 39 . . 3-C. . . 41 4-A. 55 4-B. (d List of Programs Number Page 2-I. MUX Isolation Test. 20 1st Half of Sample Programs 2-II and 2-IV 2-II. 26 27 2-III. 28 2-IV. 2nd Half of Sample Program 2-IV 29 2-V. 30 3-I. 43

 MUX Isolation Test.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 4-I. 53 4-II. 59 4-III. 61

> 88-ADC & MUX April, 1977

ii

		List of Illustrations
C	Figure	Page
	2-1. 2-1a. 2-2. 2-2a. 2-3. 2-4. 2-5.	8-Channel System. 10 8-Channel MUX Cable Layout. 10 24-Channel System. 11 24-Channel MUX Cable Layout. 12 88-ADC Silkscreen (Jumper Locations). 14 % Error In Scaling. 16 Timing Diagram for SYNC Mode. 31
	3-1. 3-2. 3-3. 3-4.	A/D Module Internal Block Diagram 39 88-ADC Schematic End of 88-MUX Schematic (Sheet 1 of 2) Section 88-MUX Schematic (Sheet 2 of 2) III
	4-1. 4-2.	88-ADC Silkscreen
	5-1. 5-2. 5-3. 5-4.	System Monitor.67Digital Coordinate System68Testing System.69"Digitized" Voltage70
L		
•		·
(· ·
	90-100 2 MUV	
	do-ADC & MUX April, 1977	111

 \mathcal{C} . . altair 880 \mathcal{C} CONVERSION SYSTEM SEGTION I INTRODUCTION . (88-ADC & MUX April, 1977 $1/(2 \ blank)$

1-1. SCOPE AND ARRANGEMENT

The 8800 Analog to Digital Converter Board (88-ADC) and 8800 Multiplexer (88-MUX) Documentation provides a general description of the printed circuit board(s) and detailed theory of their operation. The manual contains five sections as follows:

- Section I contains a general description of the Altair 88-ADC and 88-MUX boards.
- Section II provides the user with the options available with the 88-ADC and 88-MUX boards. It is very important to read this section before attempting to utilize the system.
- Section III includes a detailed theory explanation of the 88-ADC and 88-MUX circuit operations.
- 4. Troubleshooting information for the 88-ADC and 88-MUX boards is found in Section IV.
- 5. Four possible applications utilizing the 88-ADC and 88-MUX boards are shown in Section V.

1-2. DESCRIPTION

(

Many of the applications for the Altair computer require the ability to interface with real world analog signals. The 88-Analog to Digital Converter Card (88-ADC) permits the Altair 8800a or 8800b computer to measure analog voltages often encountered in scientific and industrial applications with an accuracy of one part in 4096.

The analog to digital converter module contains all of the circuitry needed to represent an analog voltage as a 12-bit binary value. The 88-ADC includes a buffer amplifier with a true differential input instrumentation amplifier option. An on-board 8-channel multiplexer is used to select one of the eight input signals. Since the 88-ADC is treated as an I/O device, it contains the circuitry to address the board and the associated timing circuitry.

Optionally, one or more 24-channel multiplexer cards (88-MUX) may be added to <u>replace</u> the 8-channel multiplexer. The 88-MUX expands the input capacity of the 88-ADC for applications requiring a large number of analog inputs.

88-ADC & MUX April, 1977

The 88-ADC is actually a stand-alone card for many systems because it contains the on-board 8-channel multiplexer. However, the real potential of the ADC and MUX conversion system lies in the ability of the 88-MUX to process more than eight signals. Thus, by using four 88-MUX cards it is possible to process up to 96 analog signals for large system layouts.

The 88-MUX card is of extremely flexible design, being easily implemented in most any system. With simple modifications, the 88-MUX board can be set up to handle a true "differential" signal on each channel. The gain and scale factoring of each channel can be set independently. Filtering can also be added to provide the desired roll-off characteristics although factoring and filtering are not offered in a differential configuration.

1-3. SPECIFICATIONS

88-ADCResolution (binary bits)Conversion TimeAccuracyQuantizing ErrorNonlinearityOffsetStabilityOffset vs. Temp.Gain vs. Temp.Nonlinearity vs. Temp.Gain vs. Supply VoltageAnalog Input ImpedanceStandard Option Voltage RangesUnipolar

12 bits 65µs. (max)

±1/2 LSB
±1/2 LSB
Externally Adjustable to zero

-10 to +10 volts (without MUX)

20 PPM/°C (max) 80 PPM/°C (max) 20 PPM/°C (max) +30 PPM/%Vs (max) 1000 Megohms

0 to +5 volts 0 to +10 volts

-5 to +5 volts

0 to +70°C

Bipolar

Operating Temperature Range

88-ADC & MUX April, 1977 Ú

Power Supply Requirements

+5 volts at 500MA +15 volts at 40MA -15 volts at 30MA

<u>88-MUX</u>

Gain Input Impedance Offset Input Signal Level

Settling Time to 0.01%

up to 1000 1 Megohm 5 mvolts (max) 0 to +10 volts -5 to +5 volts 15µsec. (max)

88-ADC & MUX April, 1977

 \mathbf{C}

(

5/(6 blank)

 \mathcal{C} altair 8800 \bigcirc CONVERSION SYSTEM SECTION II OPTIONS C 88-ADC & MUX April, 1977 7/(8 blank)

2-1. INTRODUCTION

The 8800 Analog to Digital Converter board (88-ADC) may be ordered with or without the 8800 Multiplexer (88-MUX) board. This section contains the necessary information for setting up either an 8-channel or 24-channel multiplexer system, including voltage range selection and scaling, voltage gain increase, input buffer amplifier option and zero adjustment. It is very important to read the following paragraphs before attempting to utilize your system.

2-2. MULTIPLEXER

The standard configuration of the 88-ADC board includes an 8-channel CMOS multiplexer. The input signals for this system are interfaced to the card via a 10-pin connector, P2. However, control logic is provided on the board for decoding up to twenty-four channels of input data by utilizing the 88-MUX multiplexer board and input connector, P1. For larger systems, up to four 88-MUX cards may be used, resulting in a 96-channel capability. Input signals are interfaced to both multiplexer systems via one or more cables from DB-25 connectors on the chassis rear panel. Proper cable-connector utilization and corresponding software control is necessary to select between the 8 or 24-channel multiplexer. Refer to Figures 2-1 and 2-1a for an 8-channel system and Figures 2-2 and 2-2a for a 24-channel system.

88-ADC & MUX April, 1977

88-ADC & MUX April, 1977

If you have received the $\underline{\text{REV 1}}$ 88-MUX board, please note the follow- ing error on the board:

There is a missing etch on the circuit marked A5. It is near the junction of R23, C13 and R22. If R23 is to be utilized, it will be necessary to install a jumper between R22 and R23 (use circuit B1 as an example). Refer to the drawing below for the position of the missing land. You may also want to refer to the 88-MUX Silkscreen (page 49) at IC A5, zone C4, for the component layout.

2-3. 88-ADC A/D MODULE INPUT VOLTAGE RANGES

The A/D module can be set up to read the voltage ranges shown in Table 2-A by implementing the proper jumpering options. Figure 2-3, 88-ADC Silkscreen, shows the locations for the jumpering options listed. When utilizing one or more 88-MUX cards in a system, it is imperative that the selected voltage range is the same for the A/D module and the 88-MUX amplifiers. (Refer to Section 2-4.)

WARNING

When installing the jumper wires, be sure not to short any lands together or form solder bridges.

88-ADC & MUX April, 1977

C

Table :	2-A.	A/D	Module	Input	Voltage	Ranges
---------	------	-----	--------	-------	---------	--------

A/D MODULE INPUT VOLTAGE RANGE	JI	J2	J3	J4	J5	Additional Procedures
<u>UNIPOLAR</u> 0 TO +5v 0 TO +10v		x x	x x		x	
<u>BIPOLAR</u> -5 TO +5v (Std. Config.) -10 TO +10v (No MUX)	x	x x		x x		Drill out Dl
X = JUMPER INSTALL	FD					I

NOTE

J3 and J4 jumpers have a common pad labelled J3/J4 on the board. Only one end of J5 is labelled. The other end of J5 is found directly to the right of the square pad going to the A/D module, pin 6.

Figure 2-3. 88-ADC Silkscreen (Jumper Locations)

2-4. 88-ADC INPUT RANGES USING MULTIPLEXERS

The standard configuration of both types of multiplexers provides for the (-5v to +5v) voltage range at each amplifier input. Other input ranges can be set up by selecting the proper resistor values on the multiplexer. Either multiplexer is capable of processing signals over a <u>maximum</u> 15v range. Table 2-B lists the possible ranges and the corresponding resistor changes.

88-ADC & MUX April, 1977

88-ADC INPUT VOLTAGE RANGE	24 Char (88-	nnel MUX MUX)	8 Chann (88-	el MUX ADC)
	R135	R138	R26	R24
UNIPOLAR 0 TO +5v 0 TO +10v	5.2K	4.3K	180~	6.8K
BIPOLAR -5 TO +5v (Std. Config.)	18.2K	Not Used	١ĸ	2.2K

Table 2-B. 88-ADC Input Ranges Using Multiplexers

Since both multiplexer systems are limited to a maximum input voltage range of 15 volts, the (-10 to +10v) range cannot be multiplexed directly. There are two methods that can be implemented to handle this range. First, the A/D module can convert over this entire voltage range <u>without multiplexing</u> if the signals are input via pins 1 and 2 on connector P1 (or an external multiplexing system can interface at this point). The second method is to scale down all voltages accordingly, using an 88-MUX based system. For example, if the input voltage divider network resistors of an 88-MUX card are properly chosen, an external signal range of (-10v to +10v) will appear as a (-5v to +5v) range to the 88-ADC card.

The following example references components on an 88-MUX card amplifier #1. Refer to the 88-MUX schematic, Figure 3-3, at the end of Section III. Use the formula for a voltage divider:

 $V_{OUT} = V_{IN}(R_3)/(R_3 + R_4)$

Scaling down the input voltage range will always reduce accuracy by an appropriate factor. In many cases, however, the increase in allowable voltage span will more than compensate for this error.

88-ADC & MUX April, 1977

Example 1: Suppose a (-20v to +20v) span is desired. Scaling by a factor of 4 will give the best accuracy over the total range.

Voltage Divider Formula: $V_{OUT} = V_{IN}(R_3)/(R_3 + R_4)$ Desired Voltage: $V_{OUT} = 5v; V_{IN} 20v$

Thus, 5 = $20v(R_3)/(R_3 + R_4)$ and $1/4 = (R_3)/(R_3 + R_4)$

To keep the input impedance relatively high, choose $R_3 = 1$ Megohm. (1/4 = 1 Megohm/(1 Megohm + R_4), thus $R_4 = 3$ Megohms.) The source impedance has a significant factor on accuracy, especially as it becomes large. Referring to Figure 2-4, the % error can be calculated as follows (neglecting amplifier loading effects):

 $V_{OUT}(\text{theoretical}) = V_{IN}(R_3)/(R_3 + R_4)$ $V_{OUT}(\text{actual}) = V_{IN}(R_3)/(R_3 + R_4 + R_5)$

where ${\rm R}_{\rm S}$ is the source impedance.

88-ADC & MUX April, 1977 U

The A/D module error is .0244%. The total board error is the sum of the module error plus the scaling error. For this example, as R_s becomes larger than 100 ohms, the source impedance causes an increasingly significant portion of the total board error.

Generally, the lower the source impedance or the higher the scaling resistors, the smaller the % error factor. Beyond a certain point, however, an increase in scaling resistor impedance will begin to introduce noise. 10 Megohms is the largest recommended value for R_3 or R_4 .

NOTE

The preceeding calculations are identical for scaling voltages on other amplifiers of the 88-MUX card. R_7 and R_8 replace R_3 and R_4 , respectively, for amplifier #2, and so on.

88-ADC & MUX April, 1977

(

2-5. 88-MUX GAIN

For very small signal levels, an increase in voltage gain (unity is standard configuration) will improve the voltage span seen by the A/D module. Any gain may be specified from 1 up to 1000 by using appropriate resistor values. The channels can be set up independently for different gain factors. Gain of amplifier #1 is given by:

$$GAIN = \frac{V_{OUT}}{V_{IN}} = \frac{R_1 + R_4}{R_1}$$

Thus, neglecting divider effects from R_2 and R_3 , a value for R_4 and R_1 can be computed.

Example 2: If the input signal is a 10 Mv (.01 volt) level, a factor of 1000 will increase the signal to 10 volts. (Gain factors larger than 1000 are not recommended.) Thus, 1000

$$\frac{R_1 + R_4}{R_1}$$

If $R_4 = 1$ Megohm, then 1000 = $\frac{R_1 + 1}{R_1}$ Megohm

 $1000 R_1 + R_1 = 1 Megohm$

999
$$R_1 = 1.00 \times 10^6$$
 and $R_7 \sim 1 K$ ohm

Note that R_4 should never be greater than 1 Megohm and at this gain frequency considerations will limit the amplifier's response at around 1 KHz. (Signals changing at rates faster than this figure may be inaccurately buffered.)

Gain factoring can also be accomplished at the 88-ADC input buffer amplifier by selecting R_3 and R_4 in the same manner as above. All channels are affected in this case.

* Gain is unity when ${\rm R}_1$ is removed from the circuit.

88-ADC & MUX April, 1977

2-6. <u>88-ADC INPUT BUFFER AMPLIFIER</u>

An optional instrumentation amplifier (differential configuration) may be used in place of the input buffer amplifier which is already onboard. For small signal applications (less than 50 mv), the 88-ADC should be specified with option #1. The AD521 instrumentation amplifier can successfully track as low as lmv (.001 volt). Capability is also provided for differential inputs by utilizing a modified 88-MUX board. The modification consists of opening up 24 drill-holes in the analog ground lines (GA1, GA2, . . . etc) and using a special interface cable (#8810-303). By utilizing such a differential system, noise immunity may be increased significantly when rapidly changing signal levels are being read on adjacent channels.

2-7. ZERO ADJUSTMENT

For unipolar zero adjustment, follow these instructions:

- a) Set a reference power supply to +0.0012 volts and connect to multiplexer channel #0.
- b) Enter Program 2-I, MUX Isolation Test (page 20), with the appropriate parameters to loop on channel #0.
- c) While Program 2-I is running, adjust pot R1 for a zero output reading.
- d) Repeat steps b) and c) if necessary.

For bipolar zero adjustment, perform steps a) through d) except set the input signal level to -4.9988 volts.

88-ADC & MUX April, 1977

Program 2-I. MUX Isolation Test

This program will read up to 96 channels with an 88-MUX system, up to 8 channels with the on-board 8-channel MUX, or directly through the 88-ADC without a multiplexer. SA is the number of samples desired at each channel.

10 REM TO READ ONLY ONE CHANNEL CHANGE 70 : I = (DESIRED CH.#) AND 20 REM DELETE STATEMENT 240 30 REM CH.# IS THE LAST CHANNEL YOU WANT TO TEST 50 INPUT"ENTER VI";VI 60 INPUT"ENTER BIAS"; BIAS 65 INPUT"CH.#";CN
68 INPUT"ENTER SAMPLES";SA 70 FOR I=0 TO CN 72 PRINT:PRINT"CH.#";I 75 FOR J=0 TO SA 80 OUT130,0 90 OUT131,255 100 OUT130,4 110 OUT128,0 120 OUT128,255 130 OUT128,4 140 OUT134,0 150 OUT135,0 160 OUT134,4 170 OUT132,0 180 OUT133,0 195 OUT132,4 200 OUT131, I:OUT129, I 210 MS=INP(133):LS=INP(135) 220 V=((16*MS+((LS/16)AND 15))*VI/4095)-BIAS 230 PRINTV; 235 NEXT J 240 NEXT I

SELECTED V. SPAN	VI=	BIAS=
0 - 5 v	5	0
0 — 10v	10	0
-5 +5v	10	5
-10-+10v No MUX	20	10

88-ADC & MUX April, 1977 Ű

2-8. <u>SOFTWARE</u>

The 88-ADC board can be utilized in one of several different configurations. Depending on system requirements, one configuration may have considerable advantages over another. Two easily implemented schemes (A and B below) are briefly presented in this section to aid the user in selecting the most useful configuration for his particular system.

Note that in both methods it is possible to configure the board to handle interrupts following the normal jumpering scheme for vectored interrupt lines. The interrupt can be generated from the 88-ADC module itself or from an external piece of equipment with a "trigger" signal.

A. <u>Standard Configuration</u>

This method is employed more often since it is more versatile in application, especially for persons programming in BASIC. It is applicable to all systems <u>not</u> requiring synchronization to an external event. If the system program is written entirely in BASIC (no machine language), Program 2-I can be utilized. The advantages of Program 2-I include ease of programming and debugging. The major disadvantage is speed (maximum sample rate between samples is almost one second). For many applications, this sample rate is too slow and a high speed program would be more useful.

Three possible variations (listed below) can be implemented with this method. Sample Programs 2-II through 2-V contain the necessary information to apply any of these approaches to a particular system. These sample programs are found on pages 24 through 31.

- a true "machine" language program which is fast but more complex to write, especially if data manipulation must be done in this form
- a "hybrid" program written in BASIC which accesses a USR (usercalled) machine language "acquisition" program
- 3. "real-time" output to a smart terminal

Utilization of the machine language acquisition results in a maximum sample rate of approximately 65 microseconds. Sample Program 2-II is an example of the first variation (without data manipulation) and Sample Program 2-III is an example of the "hybrid" version of Program 2-II.

88-ADC & MUX April, 1977

In both sample programs (2-II and 2-III), approximately 45 microseconds are used for storage of each data sample (two bytes), followed by the start of the next conversion, and "housekeeping" functions (i.e. checking if the data block is filled). This leaves only 20 microseconds for data manipulation if the maximum A/D rate is to be maintained. Thus, the second variation (hybrid) is probably more versatile since the maximum sample rate is maintained and data manipulation is more easily handled in BASIC.

If the third approach is implemented, interrupt flag IRQA may be useful. The terminal must be able to interpret which of the two bytes are LSB/MSB. Also, in a steady output stream, the terminal should know which bytes link together to form one sample.

B. Synchronous Mode

The second method utilizing the 88-ADC makes use of an external event or "SYNC" pulse to initiate each conversion, thus "slaving" the 88-ADC to an external "trigger" signal. Only one conversion is completed for each trigger pulse, eliminating the processing time during intervals of irrelevant data. This occurs with a slight increase in the maximum acquisition rate, approximately 78 microseconds between samples.

To implement this scheme, the status of the IRQ flags are monitored without allowing another start until the in-process conversion has been completed. The external trigger for CBI is input via Pl pin 9 and should be standard logic levels (LOW \leq .8 volts, HIGH \geq 2 volts).

The Std. Config. Mode can also be initiated by an interrupt (or by doing a status check of the CBI flag). A "burst" of data is input and handled as previously described. However, the burst may contain more data than is required, resulting in excessive handling time.

Program 2-V is the "hybrid".version of Program 2-IV.

88-ADC & MUX April, 1977 ŧ.

C. The following hints are important when designing any 88-ADC program: 1. The last four bits of the LSB byte in each sample should be masked out when reconstructing samples. 2. If interrupts are enabled from the CB1 "trigger" line, care should be taken to insure sufficient processing time is allowed between trigger words, or system errors will result. 3. In the Synchronous Mode (\underline{B}) , the status check for the trigger word is approximately 18 microseconds long. If the trigger word is "out-of-sync" to the time when the program enters the status check loop, the maximum sample rate may be extended by 13 microseconds. 4. Referring to the block of NOP instruction in Programs 2-II and 2-IV, the delay time must be included or the data conversion will not be completed at the time when data is read and stored by the CPU. C

88-ADC & MUX April, 1977

D. Notes for Sample Programs 2-II Through 2-V

- (1) START ADDRESS These two bytes specify starting address of the data block in memory. If only one sample of data is needed, this address should be two less than the END address.
- ② END ADDRESS This word is the MSB address byte and represents the end of the data block in memory (i.e. the last data storage address is one byte less than this address).
- (3) IRQB STATUS FLAG This word initializes PIA 1, enabling or disabling the IRQB interrupt line. It also determines the desired active transition (positive or negative going edge) of the trigger word applied to Pl pin 6. It is possible to use this word in the STD. CONFIG. mode to initiate the data acquisition and is required for proper operation in the SYNC mode. The trigger signal will affect the status flag whether the IRQ line is enabled or not.

And the second s	the second s	
CONTROL	DESIRED	DESIRED
WORD	TRIGGER	INTERRUPT
	TRANSITION	ACTION
006	÷	IRQB DISABLED
004	÷ +	IRQB DISABLED
007	† -	IRQB ENABLED
005	¥	IRQB ENABLED

A/D MODULE STATUS FLAG - This word determines the status of the A/D module. During a conversion, the CAl line of PIA 1 monitors the BUSY line of the A/D module which is HIGH during a conversion and LOW upon completion. If enabled, the falling edge generates an interrupt on the IRQA interrupt line. The status channel flag (bit 7) can also be monitored to verify the completion of a conversion, if desired, by using a scheme similar to the status check of channel 204 in the SYNC program (2-IV or 2-V).

 CONTROL	DESIRED	DESIRED
WORD	TRIGGER	INTERRUPT
	TRANSITION	ACTION
004	¥	IRQA DISABLED
005	¥	IRQA ENABLED

88-ADC & MUX April, 1977

OCTAL	08	CIMAL		
ddress	Data Address	Data	(Octal)	Comments
037) 100 102 103 104 105 106 107 110 111 112 113 114 115 116 116 117 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137 140 141 141 142 143 144 145 146 147 150 151 150 151 150 151 152 155 155 155 155 155 155	001 8001 0001 8001 040 8002 076 8003 000 8004 323 8005 [200] 8006 323 8007 [202] 8008 323 8007 [202] 8008 323 8017 323 8013 [206] 8012 323 8013 [205] 8014 323 8015 [207] 8016 323 8017 323 8017 323 8021 076 8023 004 8024 323 8025 202 3026 076 8023 004 8032 323 8033 320 8033 202 3026 076 80331 3004 8034 323 803	0413 1 0 32 62 0 211 130 211 132 211 132 211 132 211 132 211 134 211 132 211 133 211 131 62 4 211 130 62 41 1130 62 41 1132 62 4 211 132 62 4 211 132 62 4 211 132 62 0 131	LXIB DATA] LDA [0] OUT CH.200 OUT CH.202 OUT CH.204 OUT CH.205 OUT CH.205 OUT CH.205 OUT CH.205 OUT CH.205 OUT CH.207 LDA [377] CUT CH.201 OUT CH.203 LDA [004] OUT CH.202 LDA [004] OUT CH.202 LDA [004] OUT CH.200 LDA [004] OUT CH.200 CH.205 CH.205 CH.205 CH.207 CH.207 CH.201 CH.201 CH.200 CH.200 CH.200 CH.200 CH.205 CH.205 CH.205 CH.205 CH.205 CH.207 CH.201 CH.201 CH.200 CH.201 CH.201 CH.201 CH.201 CH.201 CH.202 CH.201 CH.202 CH.201 CH.202 CH.201 CH.202 CH.200 CH.201 CH.202 CH.201 CH.202 CH.201 CH.202 CH.200 CH.2	Setup start address of stored block of data. Pre-initialize PIAs and define as input/output devices. Sets up PIAØ (A) section for 8- channel MUX ad- dress (if used). Sets up PIAØ so CEI line pulses ‡ each time CH. 201 is output. Sets up PIAI for status/interrupt flag in (A) section. Selects one of eignt MUX channels from on-board MUX (if used).

Program 2-II or SYNC Mode (B), Program 2-IV.

1st Half of Sample Programs 2-II and 2-IV. A/D Block Storage Program

88-ADC & MUX April, 1977

٠

Ű

Address	Data	Address	Data	Op. Code (Octal)	Comments
(037) 153 154 155 156 157 160 161 162 163 163 164 165 166 167 170 171 172 173 174 175 176 177 200 201 202 203 204 205 206 206 207 210 211 212 213 214 215 216	202 166 037 (6) 333 205 (8) 002 003 333 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 003 207 002 005 007 007 000 207 000 007 007 007	8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8058 8059 8060 8061 8062 8063 8064 8065 8064 8065 8066 8069 8066 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078	195 118 31 219 133 219 135 2 3 62 0 211 129 62 64 184 202 140 31 0 0 0 0 0 195 110 31 195 110 195 110 105 105 105 105 105 105 10	JMP [ADD.] INPUT CH.205(B) STAX B INCR B INCR B LDA [000] (7) OUT CH.201 LDA [100] (2) CMP B JZ [ADD.] JMP [ADD.]	Jump to strobe A/D. Read (MSB) data byte and store. Increment store address Read (LSB) data byte and store. Increment store address Strobe A/D for next conversion. (Also set l of 24 88-MUX chan- nels, if used) Load end block store address and compare to see if block full. If full, jump to end of program. Required delay for conversion to com- plete. (Can be replaced with in- structions to handle previously stored data bytes. But instruction time to- tal 4 l&secc. for maximum conversion rate.) Jump back to read. Program end. Jump to processing program or do a return.

0 77 . . אר-נו ה - -A/D Block St (STD CONFIG Mode)

88-ADC & MUX April, 1977

(

(

(

Sample Program 2-III. Fast A/D - STD. CONFIG. (65µs) VI=10:BIAS=5 INPUT"PL, CN";PL, CN FOP J=0 TO CN:PRINT:PRINT"CH.#";J POKE 8040,J:POKE 8055,J POKE 8040,J:POKE 8001,0:POKE 8002,32:POKE 8003,62 POKE 8040,J:POKE 8005,211:POKE 8002,32:POKE 8003,62 POKE 8007,211:POKE 8008,130:POKE 8009,211 POKE 8010,132:POKE 8011,211:POKE 8015,211 POKE 8013,211:POKE 8014,133:POKE 8015,211 POKE 8016,135:POKE 8017,62:POKE 8018,255 POKE 8019,211:POKE 8020,129:POKE 8021,211 POKE 8019,211:POKE 8023,62:POKE 8024,4 POKE 8022,131:POKE 8026,130:POKE 8027,62 POKE 8025,211:POKE 8026,130:POKE 8037,62 POKE 8028,44:POKE 8029,211:POKE 8033,211 POKE 8031,62:POKE 8032,4:POKE 8033,211 POKE 8034,132:POKE 8035,62:POKE 8036,4 POKE 8037,211:POKE 8035,62:POKE 8036,4 POKE 8041,211:POKE 8042,131 POKE 8043,195:POKE 8044,118:POKE 8045,31 POKE 8043,195:POKE 8044,118:POKE 8045,31 POKE 8040,190, POKE 8045,31 POKE 8040,190, POKE 8044,118:POKE 8045,31 POKE 8040,190, POKE 8045,31 POKE 8040,190, POKE 8044,118:POKE 8045,31 POKE 8040,190, POKE 8045,31 POKE 8040,190, POKE 8045,31 2 VI=10:BIAS=5 4 6 8 10 20 30 40 50 60 70 80 90 100 110 POKE 120 130 140 POKE 8041,211:PUKE 8042,131 8043,195:POKE 8044,118:POKE 8045,31 8046,219:POKE 8047,133:POKE 8048,2 8049,3:POKE 8050,219:POKE 8051,135 8052,2:POKE 8053,3:POKE 8054,62 8056,211:POKE 8057,129 8058,62:POKE 8057,129 8058,62:POKE 8052,140:POKE 8060,184 8061,202:POKE 8062,140:POKE 8063,31 150 POKE 160 POKE 170 POKE 180 POKE 190 POKE 200 POKE 210 POKE 8064,0:POKE 8065,0:POKE 8066,0 8067,0:POKE 8066,0:POKE 8066,0 8067,0:POKE 8068,0:POKE 8069,0 8070,0:POKE 8071,0:POKE 8072,0 220 POKE 230 POKE 240 POKE 8073,195:POKE 8074,110:POKE 8075,31 8076,195:POKE 8077,64:POKE 8078,31 250 POKE 260 POKE 500 POKE 8076,201 510 POKE 73,64:POKE 74,31:REM USR ADDRESS X=USR(Y) 600 FOR I=8194 TO 16384 STEP 2 700 850 LS=PEEK(I+1):MS=PEEK(I) 860 V=((16*MS+((LS/16)AND 15))*VI/4095)-BIAS 865 IF PL=1 THEN 2000 870 PRINTV, 900 NEXT I 1000 NEXT J:END 2000 D=36 2010 A=INT(V*5) 2020 X=D+A 2026 IF PL=0 THEN 2040 2030 PRINT TAB(X) ** 2040 GOTO 900 0K PL = 1 for PLOT; 0 for NO PLOT. CN = last ch. # to be read Change statement 2 for proper module voltage range 28

88-ADC & MUX April, 1977
	OCTA	L	DECIM	AL	On. Code	
Addres	<u>s</u>	Data	Address	Data	(Octal)	Comments
(037)	153 154 155 156	303 177 037 6 333	8043 8044 8045 8046	195 127 31 219	JMP [ADD.] INPUT	Jump to status check. Read (LSB) data byte
	160	8002	8047	135	STAX B	and store.
	161	333	8049 8050	195	INCR B INPUT	Read (MSB) data byte
]	163	205	8051 8052	133	CH.205(B) STAX B	and store.
	165	003	8053 8054	3 195	INCR B	Increment store addre Check status CH, 204
	167 170 171	204 027 322	8055 8056 8057	132 23 210	CH. 204 RAL JNC	(wait in loop until B 7 is set HIGH).
	172	166 037	8058 8059	31		الجنبرد المح
	174 175 176 177	⑦000 323 201	8060 8061 8062 8063	62 0 211 129	LDA [000] ⑦ 0UT CH.201	Strope A/D for next conversion. (Also se 1 of 24 88-MUX chan- nels, if used)
	200 201 202 203 204 205	270 270 312 222 037	8064 8065 8066 8067 8068 8069	62 54 184 202 146 31	LDA [100] ② CMPB JZ [ADD.]	Load end block store address and compare t see if block full. I full, jump to end of program.
	206 207 210 211 212 213 214 215	000 000 000 000 000 000 000 000	8070 8071 8072 8073 8074 8075 8076 8077	, 0 0 0 0 0 0 0 0 0	-	Required delay for conversion to complet (Can be replaced with instructions to handl previously stored dat bytes. But instructi time total ≤ 18xec. f maximum conversion ra
(037)	216 217 220 221	000 303 156 037	8078 8079 8080 8081	0 195 110 31	JMP [ADD.]	Last delay NOP. Now jump back to read.
	222 223 224	³⁰³	8082 8083 8084	[¹⁹⁵]		Program end. Jump to processing program or do a return.

.

88-ADC & MUX April, 1977

```
Sample Program 2-V. Fast A/D - SYNC Mode (78\mus)
 2 VI=10:BIAS=5
      INPUT "PL, CN";PL, CN
FOR J=0 TO CN:PRINT:PRINT"CH.#";J
  4
 6
      POKE 8040, J: POKE 8061, J
POKE 8000, 1: POKE 8001, 0: POKE 8002, 32: POKE 8003, 62
POKE 8004, 0: POKE 8005, 211: POKE 8006, 128
 8
 10
 20
                     8004,0:POKE 8005,211:POKE 8000,220
8007,211:POKE 8008,130:POKE 8009,211
8010,132:POKE 8011,211:POKE 8012,134
8013,211:POKE 8014,133:POKE 8012,134
8016,135:POKE 8017,62:POKE 8018,255
8019,21:1:POKE 8020,129:POKE 8018,251
8022,131:POKE 8023,62:POKE 8024,4
9025 211:POKE 8026 130:POKE 8027 62
 30
         POKE
 40
          POKE
 50
          POKE
 60
         POKE
 70
         POKE
 80
         POKE
 90 POKE
100 POKE
                      8022,131:POKE 8023,62:POKE 8024,4
8025,211:POKE 8026,130:POKE 8027,62
8028,44:POKE 8029,211:POKE 8030,128
8031,62:POKE 8032,4:POKE 8033,211
 110
           POKE
                        8034,132:POKE 8035,62:POKE 8036,4
8037,211:POKE 8038,134:POKE 8039,62
8041,211:POKE 8042,131
 120
           POKE
 130
           POKE
                       8041,211:POKE 8042,131
8043,195:POKE 8044,127:POKE 8045,31
8046,219:POKE 8047,135:POKE 8048,2
8049,3:POKE 8050,219:POKE 8051,133
8052,2:POKE 8053,3:POKE 8054,219
8055,132:POKE 8056,23:POKE 8057,210
8058,118:POKE 8056,23:POKE 8057,210
8058,118:POKE 8059,31:POKE 8060,62
8064,62:POKE 8063,129
8064,62:POKE 8065,64:POKE 8066,184
8067,202:POKE 8065,64:POKE 8066,184
8067,02:POKE 8063,146:POKE 8069,31
8070,0:POKE 8071,0:POKE 8072,0
8073,0:POKE 8077,0:POKE 8075,0
8076,0:POKE 8077,0:POKE 8078,0
8079,195:POKE 8080,110:POKE 8081,31
 .140
           POKE
           POKE
 150
 160
           POKE
 170
           POKE
 180
           POKE
 190
           POKE
 200
           POKE
 210
           POKE
 220
           POKE
 230
           POKE
 240
           POKE
 250
           POKE
 260
           POKE
           POKE 8079,195:POKE 8080,110:POKE 8081,31
POKE 8082,195:POKE 8083,64:POKE 8084,31
POKE 8032,5:POKE 8036,5:POKE 8082,201:REM SETUP FLAGS&RETURN
POKE 73,64:POKE 74,31:REM USR ADDRESS
 270
 280
 500
 510
           X=USR(Y)
 600
 700
           FOR I=8194 TO 16384 STEP 2
           MS=PEEK(I+1):LS=PEEK(I)
V=((16*MS+((LS/16)AND 15))*VI/4095)-BIAS
 850
 860
 865 IF PL=1 THEN 2000
 870 PRINTV,
 900 NEXT I
 1000 NEXT J:END
 2000 D=36
 2010
           A=INT(V*5)
 2020 X=D+A
 2026 IF PL=0 THEN 2040
             PRINTTAB(X)"*"
2030
2040 GOTO 900
0K
PL = 1 for PLOT; 0 for NO PLOT
CN = last ch. # to be read
Change statement 2 for proper voltage range
                                                                                                                                                             88-ADC & MUX
April, 1977
       30
```

U

2-9. MOS IC SPECIAL HANDLING PRECAUTIONS

There is one MOS integrated circuit on the 88-ADC board, IC U. The IC is very sensitive to static electricity and transient voltages. In order to prevent damage to the component, read over the following precautions and adhere to them as closely as possible. FAILURE TO DO SO MAY RESULT IN PERMANENT DAMAGE TO THE IC.

- a) All equipment (soldering iron, tools, solder, etc.) should be at the same potential as the PC board, the assembler, the work surface and the IC with its container. This can be accomplished by continuous physical contact with the work surface, the components and everything else involved with the operation.
- b) When handling the IC, develop the habit of first touching the conductive container in which it is stored before touching the IC itself.
- c) If the IC has to be moved from one container to another, touch both containers before doing so.
- d) Do not wear clothing which will build up static charges. Preferably wear clothing made of cotton rather than wool or synthetic fibers.
- e) Always touch the PC board before touching the IC to the board. Try to maintain this contact as much as possible while installing the IC.
- f) Handle the IC by the edges. Avoid touching the pins themselves as much as possible.
- g) Dry air moving over plastic can build up considerable static charges. Avoid placing the IC near any such area or object.

88-ADC & MUX April, 1977

3-1. <u>GENERAL</u>

Section III provides a detailed theory explanation of the circuit contained within the 88-ADC and 88-MUX boards, including a description of the logic symbols used in the schematics.

Although most applications will utilize either the 8-channel or 24channel multiplexer system, the input signal for the 88-ADC board can bypass the multiplexer system independently through connector P1. This section will describe how the input signal can enter directly through P1, through the 8-channel multiplexer on the 88-ADC board, or through the 24-channel 88-MUX board.

3-2. LOGIC CIRCUITS

The logic circuits used in the 88-ADC (Figure 3-2) and 88-MUX (Figure 3-3 and 3-4) schematics are presented in Table 3-1. The table provides the functional name, symbolic representation and brief description of each logic circuit. Where applicable, a truth table is furnished to aid in understanding circuit operation. The active state of the inputs and outputs of the logic circuits is graphically displayed by small circles. A small circle at an input to a logic circuit indicates that the input is an active LOW; that is, a LOW signal will enable the input. A small circle at the output of a logic circuit indicates that the output is an active LOW; that is, the output is LOW in the actuated state. Conversely, the absence of a small circle indicates that the input is active HIGH. Note that LOW active signals are written with a bar on top and the absence of such a bar signifies an active HIGH signal level.

88-ADC & MUX April, 1977

	Table 3-A. Symbol Defin	itions	
NAME	LOGIC SYMBOL	DESCRIPTION	(
NAND gate	$A \xrightarrow{B}_{N} Y$ $Y = \overline{AB \dots N}$	The NAND gate performs one of the fundamental logic functions. All of the inputs have to be enable (HIGH) to produce the desired (LOW output. The output is HIGH if any of the inputs are LOW.	ed)
Inverter	A Ā	The inverter is a device whose output is the opposite state of the input.	
Non-Inverting Bus Driver	A A	The non-inverting bus driver is a device whose output is the same state as the input. Data is enable through the device by applying a (LOW) signal to the E input. When disabled, the outputs enter a high impedance state.	ed
Operational Amplifier		The operational amplifier is a device that is operated as a buffe for analog (linear) signals.	r
CMOS Multiplexer	Inputs Output	The CMOS multiplexer outputs one o eight input channels, depending on the code received at the channel select lines.	f
	L ·	contir	nued

88-ADC & MUX April, 1977

	LOGIC Symbol	DESCRIPTION
dual Retriggerable Monostable Multiv1brator	Inputs Outputs	A monostable multivibrator has but one stable state from which it can be triggered to change states for a predetermined interval. Externa capacitance and resistance are selected to achieve a desired pulse width. Retriggerable means that before the output pulse is termi- nated, the input can be triggered again, allowing output pulses of long durations. The A input must go LOW while the B input is held HIGH to initiate an output pulse.
J-K Dual Flip-Flop with Clear		The output of this flip-flop can b modified by conditioning the J and K inputs HIGH or LOW. Data is tra ferred to the output on the fallim edge of the clock pulse. The CLEA (CLR) input overrides the CLOCK (C and DATA inputs and sets the Q out put LOW.
3-3. <u>88-AD</u> The in pins 1 and The voltage	<u>C INPUT BUFFER AMPLIFIER (Figure</u> put signal origin for the 88-ADC 2 (zone D3). (P1 pin 1 = (+) in gain from the buffer amplifier $OUT = V(R_3 + R_4)/R_3$ and is stric = voltage out of amplifier (IC B	<u>3-2)</u> is through connector P1, put, and P1 pin 2 = ground.) (IC B, zone C3) is given by tly a function of R ₃ and R ₄) pin 6 and V = voltage the gain will be unity which
where V _{OUT} present at is the stan selection o voltage at C7 can be s	dard configuration. Input scali f R_5 and R_6 as given by V = V_{IN} Pl pin 2 and V = voltage at ampl elected to provide the desired r	ng can be realized by proper R_5)/ $(R_5 + R_6)$ where $V_{IN} =$ ifier (IC B) pin 3. R_5 and oll-off response.

3-4. A/D MODULE (Figure 3-2)

The A/D module (see Figure 3-1, A/D Module Internal Block Diagram) is operated as a successive approximation register with the following internal sections: clock, binary counter/shift register (CSR), digital to analog converter (DAC) and comparator circuit. On the leading edge of a positive going START conversion pulse pin 34 (zone C5), the BUSY signal pin 33 is latched and the most significant bit (MSB) pin 72 (zone C4) of the (CSR) is set up to be tested first. The MSB is set True, resulting in a corresponding (DAC) output. The DAC provides an analog output voltage which is dependent on the binary code input. This analog voltage output is compared to the input signal within the comparator and a digital True (1) or False (0) signal is clocked into the proper bit location in the (CSR) register. The process is then repeated, using the next most significant bit. This results in a string of True or False binary weighted bits which are shifted into the register until the least significant bit (LSB) has been "tested" and the comparator toggles True. Completion of the (LSB) test indicates "equality" of the digitally encoded DAC output and input signals. Once the LSB has been "tested," the BUSY signal goes LOW and the digitally coded voltage may be read as valid. Note that during "conversion" time, the data output lines will be toggling back and forth between HIGH and LOW states and will not be stable until after the LSB has been tested and the BUSY signal goes LOW.

> 88-ADC & MUX April, 1977

NAND gate G pin 11 and pin 8 (zone B6) generate input or output signals to or from the CPU, respectively. These signals are used to enable the bus output drivers S and P (zone A5 and A4) and input drivers S and R (zone A3). They are also used to strobe the R/W lines on PIAs M and N pins 21 (zone B4 and B3, respectively). The R/W line determines in which direction data will flow through the PIA. The output of G pin 6 (zone B6) sets the CS1 control lines HIGH on PIA-M and PIA-N pin 24 on <u>either</u> an input or an output and this enables the PIA.

Upon receiving a Read command, the PDBIN signal is inverted to the input of NAND gate G pin 1 (zone B6). With a Write, the \overline{PWR} signal goes directly to input pin 2 of G. The output of G pin 3 strobes the "E" lines pin 25 of the PIAs with a positive going pulse. The "E" pulse strobes data or control signals into the PIA internal registers.

A WAIT state must be introduced during an input to the CPU from the 88-ADC because of the inherent slowness of the PIA latches as compared to the CPU speed. This is accomplished by ICs G, E, F and H. When the E flip-flop (zone C6) is set HIGH, the \overline{Q} output pin 13 goes LOW, causing PRDY to remain LOW and a temporary HALT in processing occurs. The PWAIT line, returning from the CPU, will be set HIGH after one WAIT state (500 ns.) This clears the E flip-flop through ICs F and H (zone C7) and processing resumes.

The E flip-flop and PIAs M and N are also cleared with a Power-On Clear (\overline{POC}) command from the CPU card during the power up condition. The lower order address lines AØ (LSB), Al and A2, which comprise the last byte of the channel address, are decoded by PIAs M and N to provide the access pattern shown in Table 3-C. For example, an output command to channel 131 would decode lines A2=LOW, A1=HIGH and A0=HIGH. Thus, PIA-N, Section A, Data Channel is selected.

> 88-ADC & MUX April, 1977

Table 3-C. Cr	nannel Address vs	. PIA Enables			
(A2) En Binary Ad	PIA Ø abled dress Code	(A2) PIA 1 Enabled Binary Address Code			
(\overline{AT}) Section B	(A1) Section A	(AT) Section B	(A1) Section A		
128	130	132	134		
129	131	133	135		
	Table 3-C. Cr (AZ) En Binary Ad (AT) Section B 128 129	Table 3-C.Channel Address vs(AZ)PIA Ø EnabledBinary Address Code(AT) Section B(A1) Section A128130129131	Table 3-C. Channel Address vs. PIA Enables(A2) PIA Ø(A2) PEnabledEnaBinary Address CodeBinary Address Address Code(AT) Section B(A1) Section A128130129131133		

.

To begin conversion, the D one-shot (zone C6) is used to generate the START pulse to the A/D module. The standard configuration of the 88-ADC board uses the CB2 line pin 19 (zone B2) of PIA-N to strobe the D one-shot. The proper initialization codes (Program 3-I, page 43) must be received by the PIA.

These codes may be modified as described within the sample program in Section 2-8, although the START pulse always consists of a LOW going transition of CB2.

The START signal can generate one BEGIN CONVERSION command (100ns minimum), but the conversion must be completed and processed before another pulse is applied. The time is dependent on the software being utilized, from \sim 65usec. in STD. CONFIG. up to \sim 1 sec. using BASIC only. The STATUS line (P1 pin 8) can be monitored, indicating whether the A/D module is busy or ready to accept another conversion command. However, software processing is asynchronous to the hardware STATUS signal so caution is advised for real time high speed operation. For true monitor capability, the card can be set up as described in Section 2-8(B), Synchronous Mode.

38-ADC & MUX April, 1977

The binary address code for the desired multiplexer channel is latched by PIA-N. The MAØ through MA7 signals (zone B2) can be set to 0 or 1 by generating the proper output code (Table 4-A, page 55) to the PIA. These signals are output on connector P1 for use by the 88-MUX card(s).

The PAØ, PA1 and PA2 signals (zone B2) are generated in a similar manner to MAØ through MA7 and these are input to the 8-channel multiplexer, IC U, on the 88-ADC board. These signals from PAØ, PA1 and PA2 select one of eight input channels, AXO through AX7, which are input via connector P2 (refer to Table 4-B, page 63). Input protection for the 88-MUX is provided by diodes D1 through D16 (zone D1), resistors R16 through R23 (zone D2), resistors R24 through R28 and transistor Q2. Voltages larger than the supply voltages for the multiplexer IC U are "clamped" by this circuitry.

3-6. 88-MUX 24-CHANNEL MULTIPLEXER (Figure 3-3)

The CMOS 4051 Multiplexers (zones B7, B5 and B2) are controlled by means of the A, B, C and EN inputs. MUX-A is enabled for channels 0 through 7, MUX-B is enabled for channels 8 through 15, and MUX-C for channels 16 through 23. The $\overline{\text{EN}}$ signal pin 6 allows coupling of one of eight channels through the proper MUX IC to its output pin 3. Pins 3 of the three multiplexer ICs A, B and C go directly to the output buffer amplifier and to P1 pin 5, the MUX 1 output signal. The A, B and C signal pins 11, 10 and 9, respectively, select the binary code for the particular channel desired. Refer to the table in Figure 3-4, zone B1 and B2.

3-7. PIA INITIALIZATION AND DATA INTERPRETATION

It may also be useful to refer to Section 2-8 before reading this section.

In order to read the 88-ADC card, the PIAs must be initialized for data flow direction and control signal flags. Program 3-I is an example of 8K BASIC PIA initialization for an 88-ADC board strapped at channel 128. Note that the channel and data numbers are in <u>decimal</u>.

88-ADC & MUX April, 1977 U

Program 3-I. PIA Initialization 130*,0 131,255 130,4 80 OUT 90 OUT Initialize PIA Ø-B Section for 24 Channel 100 OUT MUX Selection 128,0 129,255 128,4 134,0 110 OUT 120 OUT Initialize PIA Ø-A Section for 8 Channel OUT 130 MUX Selection 140 OUT and/or Strobe A/D 135,0 150 OUT Initialize PIA 1-B Section for Most Significant 134,4 160 OUT 8 Bits of A/D 170 OUT 180 OUT 133,0 Initialize PIA 1-A Section for Least Significant 190 OUT 132,4 Bits of A/D *For each PIA section, the first CH. # represents the Control/Status Channel, 130 in line 80, and the second CH.# represents either the Data Channel, 131 in line 90, or the Direction Channel, depending on the status word at that time. For example, if bit 3 of the <u>status</u> word is LOW, channel #131 represents the <u>Direction</u> Register and if bit 3 is HIGH, channel #131 represents the actual <u>Data</u> Channel. Normally, the Direction Register will be written into only once in the program during initialization. From then on, the only channel accessed will be the actual Data Channel. 88-ADC & MUX April, 1977 43

After processing lines 80 through 190, initialization is complete and the multiplexer channel can be set up as follows:

<u>8-Channel MUX</u> 200 OUT 131, CH. CH. = (0-7) : OUT 129, CH. CH. = (0-96) The second half of statement 200 (OUT 129, X) also strobes the A/D module to begin a conversion. After approximately 50 microseconds, the conversion is complete and the A/D module is waiting to be read by the CPU:

210 MS = INP (133) : LS = INP (135)

The first instruction reads the <u>eight most significant</u> bits, the second reading the <u>four least significant</u> bits. By adding the voltage factors for the four least significant bits with masking and "weighting" the following statement can be written:

220 V = ((16*MS + ((LS/16) and 15)*VI/4095) - BIAS where VI = input voltage span (5, 10 or 20 volts) and BIAS = 0 for unipolar, 5 for (-5 to +5 volts) or 10 for (-10 to +10 volts). Statement 220, when combined with statement 210, will calculate an equivalent voltage (V) corresponding to the total bit count and total voltage span desired. For example, for a (0 to +10 volt) range, VI = 10.0 and BIAS = 0, and the voltage in volts is read out directly.

For only eight significant bits, statement 220 can be rewritten as follows:

220 V = (16 + MS + VI/4095) - BIAS

resulting in a corresponding increase in processing speed due to the fact that only one input instruction is required and the computations are greatly simplified.

88-ADC & MUX April, 1977 . 6

(altair 8800 CONVERSION SYSTEM SECTION IV TROUBLESHOOTING \mathcal{C} \mathcal{C} 45/(46 blank)

4-1. INTRODUCTION

Section IV is designed to aid in the location of malfunctions that could be encountered after the Altair 88-ADC and 88-MUX boards are installed in the 8800a or 8800b computer. Before installation of the board, it should be visually inspected according to the visual inspection check list. The troubleshooting tests will vary slightly, depending on whether the 8-channel or 24-channel multiplexer is utilized.

WARNING

Always disconnect power when removing the board, cutting or resoldering PC lands and removing or installing ICs.

4-2. VISUAL INSPECTION CHECK LIST

Before the 88-ADC or 88-MUX boards are installed, it is important to check the component assembly and etching of lands. Although the boards should be assembled correctly, an extensive inspection may eliminate possible malfunctions.

1. General

Carefully examine the board for the following:

a. leads that have not been soldered

b. solder bridges

c. cold solder connections

d. errors such as hairline opens in lands

2. Component Check

Using the silkscreen diagram (Figure 4-1 or 4-2) as a guide, check the following:

a. proper polarity of capacitors

b. proper polarity of diodes

c. correct color codes on all resistors

d. proper pin placement and good solder connections

e. proper placement of all components

88-ADC & MUX April, 1977

4-3. GENERAL CHECK

The following items are important factors to be considered when troubleshooting the overall system:

a. Has the system worked previously?

A PC assembly error (such as a solder short) is less probable for a setup that has operated prior to this check, unless the board has since been modified.

- b. Does the program match the system configuration? Note that depending on whether the 8-channel or 24-channel MUX is accessed, the program contents are slightly different. Also, is the addressing of the A/D correct?
- c. Improper voltages?

Too high a voltage will saturate the input buffer amplifier. If the A/D card is jumpered incorrectly, the A/D module itself can be saturated, resulting in an unvarying output near full scale. "Floating" inputs to the 8-channel MUX will also appear as saturated. If this is an undesirable feature, unused inputs to the cable should be grounded. Also, note that time-variant voltages can cause unusual results since the computer runs asynchronous to them.

- d. Is the problem on one or all channels? This is a very significant factor when troubleshooting. All channels except one, point strongly toward the multiplexer section rather than the A/D.
- e. UNDER NO CIRCUMSTANCES SHOULD THE A/D MODULE ITSELF BE TAMPERED WITH.

If the module is suspect, please return the entire card with a description of the problem for a complete factory checkout.

88-ADC & MUX April, 1977 đ

4-4. PRELIMINARY CHECK

After visual inspection and installation of the board(s), check the address and data lines for shorts and opens. All the preliminary checks are implemented with the machine On and in the Stop mode. Each of the 16 address switches on the front panel should be in the down position initially and switched to the up position individually while positioning the EXAMINE/EXAMINE NEXT* switch on the front panel to EXAMINE for each address switch setting. Observe that the corresponding LED is On. After all the switches are up, return them individually to the down position, and observe that the adjacent LED is OFF. If one LED fails during this check, or if several LEDs fail at the same time, there are possible address problems on the board(s). The board should be removed and a resistance check made on the bus pins corresponding to the address lines showing the incorrect indications. If the resistance reading indicates there is a short or open in the circuit, trace the land from the bus until the problem is isolated.

Data lines are checked in much the same manner. Address switches AØ-A7 correspond to data lights DØ-D7. These address switches are initially in the down position. Place AØ up and position DEPOSIT/ DEPOSIT NEXT** switch on the front panel to DEPOSIT and observe that the DØ LED is On. Place each of the address switches individually HIGH while positioning DEPOSIT/DEPOSIT NEXT switch on the front panel to DEPOSIT NEXT and observe that each corresponding LED comes On. Return all front panel address switches to the LOW position. Position EXAMINE/EXAMINE NEXT switch on the front panel to EXAMINE NEXT switch on the first address. Repeatedly place the EXAMINE/EXAMINE NEXT switch on the front panel to EXAMINE NEXT. This will enable the machine to read the data that was stored in the successive memory locations to verify data was deposited.

If one LED fails during this check, or if more than one LED fails at the same time, there is a possible data problem on the board(s).

- If the board(s) is being used with the 8800a, the front panel will read EX NEXT.
- ** If the board(s) is being used with the 8800b, the front panel will read DEP NEXT.

88-ADC & MUX April, 1977

4-5. MUX ISOLATION TEST (8 Channel or 24 Channel MUX System)

- a. Remove the 8800-302 cable from the 88-ADC connector P1 if a 24-channel system (88-MUX) is utilized. For an 8-channel multiplexer system, remove IC U from the 88-ADC board. Refer to the CMOS Special Handling Precautions on page 32.
- b. Connect a stable voltage source, preferably a flashlight battery (1.5 volt), between pins 1(+) and 2(gnd) of connector P1.

c. Enter Program 4-I to loop on one channel.

U

đ

<u> </u>		Program 4-1.	MUX	Isolatio	on Test
	This prop system, a or direct SA is the	gram will read up to 8 channe ly through the number of se	i up to els wit ne 88-A umples	96 cha h the o DC with desired	nnels with an 88-MUX n-board 8-channel MUX, out a multiplexer. at each channel.
C	10 REM TO RE/ 20 REM DELETI 30 REM CH.# 1 50 INPUT"ENTH 60 INPUT"ENTH 61 INPUT"ENTH 63 INPUT"ENTH 75 FOR J=0 TC 80 OUT130,0 90 OUT131,255 100 OUT128,0 120 OUT128,255 130 OUT128,4 140 OUT134,0 150 OUT135,0 160 OUT135,0 160 OUT135,0 160 OUT135,0 160 OUT132,4 200 OUT131,1:0 210 MS=INP(133) 220 V=((16*MS+ 230 PRINTV; 235 NEXT J OK	D ONLY ONE CH STATEMENT 24 S THE LAST CH R VI";VI R BIAS";BIAS ";CN R SAMPLES";SA T"CH.#";I O SA UT129,I):LS=INP(135) ((LS/16)AND 1	IANNEL IO IANNEL	CHANGE YOU WAN /4095)-E	70 : I = (DESIRED CH.#) AND T TO TEST BIAS
		SELECTED V. SPAN	VI=	BIAS=	
		0 5v	5	0	
		0 — 10v	10	0	
		-5 +5v	10	5	
	A. 6	1 -		1	1

88-ADC & MUX April, 1977

-

 d. If the computer now prints the correct answer, the problem is within the cable, the multiplexer itself or the channel code output by the 88-ADC to the 88-MUX.
 For problems related to the multiplexer, proceed to the follow-

ing sections, depending on which system you have: 8-Channel system - Section 4-15

24-Channel system - Section 4-6

- e. If the computer still does not print the correct answer, proceed to Section 4-10. This section is concerned with problems relating to the A/D module.
- 4-6. CABLE CHECK (24-Channel System)
 - a. Visually check the cable assembly carefully for misalignment and make sure it is firmly seated. Refer to Figure 2-2a, 24channel MUX Cable Layout (page 12).
 - b. Check for broken or bent pins (shorts) and broken wires.

WARNING Pins on this connector are fragile and will break if improperly handled.

c. It may be necessary to remove and re-seat the connector and repeat Program 4-I.

4-7. A/D CHANNEL CODE CHECK

If the system still fails, the A/D channel code must be checked. These signals (MAØ through MA7) are output from the 88-ADC (IC N) as standard logic levels and should follow the standard binary code which is dependent on the channel number input to Program 4-I.

a. Referring to Table 4-A, check these signals at the 100-pin edge connector on the top of the 88-MUX card.

- b. If the code is correct, proceed to Section 4-8.
- c. If the code is not correct, substitute IC $\ensuremath{\mathsf{M}}$ for IC $\ensuremath{\mathsf{N}}.$
- d. If the code is now correct, replace the bad PIA. If the code is still incorrect, refer to Section 4-13, PIA Check.

38-ADC & MUX April, 1977

(

. Table 4-A. Binary Channel Code (MA7 MA1 MA2 MA 3 MA4 MA5 MA6 SELECTED MAØ CHANNEL # (pin 16) (pin 17) (pin 18) (pin 20) (pin X) (pin V) (pin U) (pin T) L L L 0 L L L L L 1 Н L L L L L L L Н 2 L L L L L L L 3 H Н L L L L L L 4 L L Н L L L L L 5 Н L Н L L L L Ŀ 6 L Н Н L L L L L 7 Н Н Н L L L L L 8 L L L Н L L L L 9 Н L L L L Н L L 10 L Н L Н L L L L 11 Н Н L Н L L L L L 12 L L Н Н L L L (13 Н L L Н Н L L L 14 L L L Н Н Н L L 15 L L Ĺ Н Н Н Н L 16 Н L L L L L L L 17 Н L L L н L L L 18 L Н L L Н L L L L 19 Н Н L L Н L L 20 L Н L Н L L L L 21 Н L Н L Н L L L 22 L L Н Н L Н L L 23 Н Н L Н L L L Н Corresponding Signal Names А С BEN CEN В .

H = HIGH level (True) = +(2 - 4)v.D.C.

L = LOW level (False) = +(.2 - .6)v.D.C.

C

88-ADC & MUX April, 1977

4-8. <u>88-MUX CHECK (4051)</u>

If the channel code is correct, and the problem has been isolated to the 88-MUX, it is necessary to check the multiplexer ICs A, B and C.

- a. By repeating Program 4-I and referring to Table 4-A, the correct code should be seen on each multiplexer IC (A, B or C).
- b. Depending on the channel group selected, only one MUX IC should have pin 6 LOW (enabled). The other multiplexer ICs (pin 6) should be HIGH (disabled).
- c. Pins 9, 10 and 11 should correspond to inverted signals A, B and C as shown in Table 4-A.
- d. If these codes are correct, proceed to Section 4-9.
- e. If these codes are not correct, replace ICs G, F or E. Insure that the connector is properly seated and aligned and that all wires are intact.

4-9. 88-MUX INPUT BUFFERS

The final check of the 88-MUX is the input buffer itself. Note that there are 24 identical amplifier circuits which are "on line" at all times. The outputs of each group of 8 terminate at MUX A, B or C.

- a. Each buffer circuit can be monitored at its respective MUX IC pin (1, 2, 4, 5, 12, 13, 14, 15) by applying input signal voltages to the cable. Failure at any pin isolates that particular buffer circuit.
- b. After isolating the respective buffer circuit, check for correct signal level at input pin 3 of the appropriate (741) operational amplifier.
- c. If the signal is not present, check the cable and connector for the respective buffer circuit to locate a possible break or short.
- d. If the signal is present but the amplifier does not output the correct level, check for bent or broken components on the respective buffer circuit.

e. If the failure is still present, replace the (741) amplifier. This completes the 24-Channel MUX troubleshooting section.

J

U

U

4-10. POWER SUPPLY VOLTAGES ON THE 88-ADC BOARD The problem is possibly on the 88-ADC. It is first necessary to check the supply voltages. a. Monitor the following voltages directly on the A/D module pins, being careful not to short any wires together. A/D Module Pins Voltages +5v + .5v DC pin 29 +12v + .5v DC pin 27 -12v + .5v DCpin 25 b. If the voltages are correct, proceed to Section 4-11. c. If the voltages are not correct, check for 88-ADC board misalignment, power supply failure or regulator failure (79M12, 78L12 or 7805). 4-11. A/D MODULE START PULSE If the power supply voltages are correct, check the A/D START signal with a scope. a. IC D pin 13 should pulse HIGH for approximately 150ns each time the 88-ADC board is read by Program 4-I (loop on one channel). b. The output pulse should be measured on the A/D module pin 34. c. If the pulse is correct, proceed to Section 4-12. d. If the output pulse is missing, check the input of IC D pin 1 for a LOW going pulse occurring at each program. e. If the input pulse is present but the output pulse has improper timing, replace or check R9, C9 or IC D. f. If the input pulse is missing, substitute IC M for IC N and look for the proper input pulse at D1. g. After performing step (f), a good pulse indicates a bad PIA-N or poor contact in the socket. If this is not the case, refer to Section 4-13, PIA Check. 4-12. INPUT BUFFER CIRCUIT a. Connect a stable voltage, preferably a battery, to connector Pl pin 2 (+) and pin 1 (gnd). b. The input buffer IC B should track the battery voltage. The 88-ADC & MUX output should appear at IC B pin 6. 57

- c. Improper tracking indicates a bad input buffer or shorted/ broken resistors R3, R4, or R6.
- Voltage present at this point follows through jumpers Jl and J5. Refer to Table 4-A.
- e. Insure that the voltage level is within the acceptable range for the jumpering scheme being used.
- f. If the signal level at the module input pin is correct and the problem still persists, proceed to Section 4-13.

4-13. PIA CHECK

The following checkout procedure assumes that the A/D module has correct voltages present at the power supply pins and tracks the input voltage correctly at module pins 5 or 6. It also assumes negative results when IC M is substituted for IC N if there is an improper channel code or missing A/D strobe.

- a. Insure that input and supply voltages are present. Temporarily ground pin 1 of IC D and check for a HIGH at pin 2 of IC D and run Program 4-I. This should force one conversion pulse to the 88-ADC.
- b. If PIA-M and its associated control circuitry is functioning properly, the computer should print the correct voltage for one trial each time pin 1 is grounded. If the card now prints the correct voltage, IC M is probably working correctly. Since IC M and IC N are similar in operation, verify that signals appearing at IC M also appear at IC N. Verify the following connections from PIA-M to PIA-N, respectively. Read the resistance with an ohmmeter by placing the probe tips on the <u>IC pin</u> itself.

		I	C M							<u>IC</u>	N							
	pin 21					to		pin 21										
	pins 24-36, respectively					to		pins 24-36, respectively										
	pi	n 2:	3				to		pir	1 23								
Example:	•	The	re :	shou	ıld	be	cor	ntinui	ity	bet	ween	pin	21	on	IC	М	and	
	F	oin	21	on	IC	Ν.												

88-ADC & MUX Apr11, 1977 U

U

U

c. Input Test 1) Program 3-I (page 43) must be run first. Single step through Program 4-III. 2) Observe the following: Test Point Toggled Signal ("Actuated" State) J8 LOW H8 HIGH (inverted J8) G11 LOW **S**1 LOW Р1 LOW G6 HIGH (inverted G11) Program 4-III. Input Program From the 88-ADC Board Location Data 000 EEE בסם 2047 C 200 EDE CO3 000 004 000 * Channel number for card addressed at 200(octal) 3) Carefully remove PIAs M and N and perform the following test: (a) Temporarily ground one of the DØ through D7 lines on the PIA. (b) Data on the corresponding data bus input line, DIØ - DI7, should go LOW when Gll goes LOW. (c) Sequentially ground each of the eight data lines and verify the proper response on the bus lines. Example: Ground DØ pin 33 of PIA-M. When G11 goes LOW, P9 should also go LOW. All other lines should be HIGH (P3, P5, P7, S3, S5 and S9). 88-ADC & MUX April, 1977 61

d. <u>E Pulse and WAIT State Tests</u>

- While running (not single stepping) Program 4-III, check for a 500ns. HIGH pulse at G3 and pin 25 of both PIAs. If the pulse is not present, replace IC G and/or IC H.
- Repeat step (1), utilizing Program 4-II. Check for the same pulse.

3) While running Program 4-II, check for a 500ns. LOW pulse at E13, P13, H4, F8 (inverted) and F6.

This completes the A/D troubleshooting section.

4-15. <u>8-CHANNEL MULTIPLEXER SYSTEMS</u>

- a. First check the allowable input voltage ranges shown in Table 2-A, page 13. Input voltages will be "clamped" to these limits. Note that large out-of-spec voltages may damage the circuitry.
- b. Check the cable inputs and note that the ground pin 25 on the DB-25 connector (P2-6 on the 88-ADC) should be used as the signal reference point rather than some other system ground terminal.

c. If the voltage at any input pin of IC U is larger than either supply voltage at pin 16 or 7, the input clamping diodes and/or associated components are not functioning properly.

 Make sure connector P1 pins 1 and 2 are not shorted together.
No external terminations should be required at P1 when using the 8-channel system. U

U

(d

62

4-16. A/D CHANNEL CODE (88-ADC)

 a. Enter Program 4-I to loop on one channel and check for the correct binary code at IC U pins 9, 10 and 11. Refer to Table 4-B.

Example 1: Program selection of channel 0 forces pins 9, 10 and 11 HIGH.

Example 2: Channel 3 forces pins 10 and 11 LOW while pin 9 goes HIGH.

			· · · ·	
CHANNEL NUMBER	IC-U ṗin-9	IC-U pin-10	IC-U pin-11	SIGNAL LINE ENABLED
0	Н	Н	н	AXO
1	н	н	L	AX1
2	Н	L	H	AX2
3	н	L	L	AX3
4	L	н	н	AX4
- 5	L	н	L	AX5
6	L	L	Н	AX6
7	L	L	L	AX7

Table 4-B. A/D Channel Code

b. The output of IC U pin 3 should track the "enabled" signal line (AXØ-AX7). Connect a stable supply (such as a 1.5 volt battery) to P2 pin 10 (+) and pin 6 (-). IC U pin 3 should output a voltage corresponding to the battery voltage when channel 0 is enabled.

c. If the correct address code is seen at pins 9, 10 and 11 and the input voltage is within limits (but pin 3 does <u>not</u> track the input signal), replace IC U. Refer to the CMOS Special Handling Precautions on page 32.

This completes the 8-Channel Multiplexer troubleshooting.

88-ADC & MUX April, 1977

63/(64 blank)

ú J

J

CA INTERS
Albuquerque, New Mexico 87106
and the with the second s
(ISER'S DOCUMENTATION REPORT
In order to improve the quality and usefulness of our publications, user feedback is necessary. Your comments will help us effectively evaluate our documentation. Please limit your remarks to the document, giving specific page and line references when appropriate. Specific hardware or software questions should be directed to the MITS Customer Service or Software Departments, respectively.
SUGGESTIONS FOR IMPROVEMENT:
ERRORS:

C C

