

Addenda, October, 1977

1. Page 9.

ADDITION:
To use more than one MUX board in a system, jumpers must be installed to decode the board select address signals on lines MA5, MA6 and MA7 (see Figure 3-4, sheet 2). These jumpers are installed at the center of the board near the edge connector. The six pads at the right carry the address signais (labelled A5, A6 and A7) and their inverses (not labelled, but designated $\overline{A 5}, \overline{A 6}$ and $\overline{A 7})$. On the left are the three inputs of NAND gate IC H.

To set the board address, install the jumpers according to the following table.

Board Address	Channels	Connect IC H Inputs to		
0^{*}		Top	Middle	Bottom
	$0-23$	$\overline{A 5}$	$\overline{A 6}$	$\overline{A 7}$
	$24-47$	$A 5$	$\overline{A 6}$	$\overline{A 7}$
3	$48-71$	$\overline{A 5}$	$A 6$	$\overline{A 7}$
3	$72-95$	$A 5$	$A 6$	$\overline{A 7}$

*Board 0 need not be jumpered, since the inputs of IC H float HIGH when they are not connected to anything.
2. Page 20.

ADDITION:
The program given on this page works only for systems with one MUX board installed. Because of the way the board select addresses are decoded (see page 9), constants must be added to the channel numbers in order to generate the proper addresses. The following table shows the modifications to be made:

Board	Channels	Add to CN (line 70)
1	$24-47$	8
2	$48-71$	16
3	$72-95$	24

Table of Contents - Continued

Section Page
V. APPLICATIONS

List of Tables
Number Page
2-A. A/D Module. Input Voltage Ranges 14
2-B. 88-ADC Input Ranges Using Multiplexers. 15
3-A. Symbol Definttions. 36
3-8. Address Selection 39
3-C. Channel Address vs. PIA Enables 41
4-A. Binary Channel Code 55
4-B. A/D Channel Code. 63
List of Programs
Number Page
2-I. MUX Isolation Test. 20
2-II. lst Half of Sample Programs 2-II and 2-IV
A/D Block Storage Program 26 2nd Half of Sample Program 2-II
A/D Block Storage (STD. CONFIG. Mode) 27
2-III. Sample Program 2-III
Fast A/D - STD. CONFIG. 28
2-IV. 2nd Half of Sample Program 2-IV
A/D Block Storage (SYNC Mode)
29
2-V. Sample ? ogram 2-V. 30
3-I. PIA Initialization. 43
4-I. MUX Isolation Test. 53
4-II. Output Program to the 88-ADC Board. 59
4-III. Input Program from the $88-A D C$ Board 61

1-1. SCOPE AND ARRANGEMENT

The 8800 Analog to Digital Converter Board (88-ADC) and 8800 Multiplexer (88-MUX) Documentation provides a general description of the printed circuit board(s) and detailed theory of their operation. The manual contains five sections as follows:

1. Section I contains a general description of the Altair 88-ADC and 88-MUX boards.
2. Section II provides the user with the options available with the $88-\operatorname{ADC}$ and $88-$ MUX boards. It is very important to read this section before attempting to utilize the system.
3. Section III includes a detailed theory explanation of the 88-ADC and 88-MUX circuit operations.
4. Troubleshooting information for the $88-A D C$ and $88-M U X$ boards is found in Section IV.
5. Four possible applications utilizing the $88-A D C$ and $88-\mathrm{MUX}$ boards are shown in Section V.

1-2. DESCRIPTION
Many of the applications for the Altair computer require the ability to interface with real world analog signals. The $88-A n a l o g$ to Digital Converter Card (88-ADC) permits the Altair 8800a or 8800b computer to measure analog voltages often encountered in scientific and industrial applications with an accuracy of one part in 4096.

The analog to digital converter module contains all of the circuitry needed to represent an analog voltage as a 12-bit binary value. The 88-ADC includes a buffer amplifier with a true differential input instrumentation amplifier option. An on-board 8-channel multiplexer is used to select one of the eight input signals. Since the $88-A D C$ is treated as an I/O device, it contains the circuitry to address the board and the associated timing circuitry.

Optionally, one or more 24-channel multiplexer cards (88-MUX) may be added to replace the 8 -channel multiplexer. The 88 -MUX expands the input capacity of the $88-A D C$ for applications requiring a large number of analog inputs.

The 88-ADC is actually a stand-alone card for many systems because it contains the on-board 8-channel multiplexer. However, the real potential of the ADC and MUX conversion system lies in the ability of the 88-MUX to process more than eight signals. Thus, by using four 88-MUX cards it is possible to process up to 96 analog signals for large system layouts.

The 88-MUX card is of extremely flexible design, being easily implemented in most any system. With simple modifications, the 88 -MUX board can be set up to handle a true "differential" signal on each channel. The gain and scale factoring of each channel can be set independently. Filtering can also be added to provide the desired roll-off characteristics although factoring and filtering are not offered in a differential configuration.

1-3. SPECIFICATIONS

88-ADC
Resolution (binary bits) 12 bits

Conversion Time 65 s. (max)
Accuracy
Quantizing Error
Nonl inearity
Offset
Stability
Offset vs. Temp. $\quad 20 \mathrm{PPM} /{ }^{\circ}{ }^{\circ} \mathrm{C}$ (max)
Gain vs. Temp.
Nonlinearity vs. Temp.
Gain vs. Supply Voltage
Analog Input Impedance
$\pm 1 / 2$ LSB
$\pm 1 / 2$ LSB
Externally Adjustable to zero

Offset vs. Temp.	$20 \mathrm{PPM} /{ }^{\circ} \mathrm{C}(\max)$
Gain vs. Temp.	$80 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ (max)
Nonlinearity vs. Temp.	$20 \mathrm{PPM} /{ }^{\circ} \mathrm{C}(\max)$
Gain vs. Supply Voltage	$\pm 30 \mathrm{PPM} / \% \mathrm{Vs}$ (max)
Analog Input Impedance	1000 Megohms
Standard Option Voltage Panges	
Unipolar	0 to +5 volts
	0 to +10 volts
Bipolar	-5 to +5 volts
	-10 to +10 volts (without MUX)
Operating Temperature Range	0 to $+70^{\circ} \mathrm{C}$

2-1. INTRODUCTION
The 8800 Analog to Digital Converter board ($88-A D C$) may be ordered with or without the 8800 Multiplexer ($88-\mathrm{MUX}$) board. This section contains the necessary information for setting up either an 8-channel or 24-channel multiplexer system, including voltage range selection and scaling, voltage gain increase, input buffer amplifier option and zero adjustment. It is very important to read the following paragraphs before attempting to utilize your system.

2-2. MULTIPLEXER

The standard configuration of the 88-ADC board includes an 8-channel CMOS multiplexer. The input signals for this system are interfaced to the card via a lo-pin connector, P2. However, control logic is provided on the board for decoding up to twenty-four channels of input data by utilizing the 88-MUX multiplexer board and input connector, Pl. For larger systems, up to four 88-MUX cards may be used, resulting in a $96-$ channel capability. Input signals are interfaced to both multiplexer systems via one or more cables from DB-25 connectors on the chassis rear panel. Proper cable-connector utilization and corresponding software control is necessary to select between the 8 or 24-channel multiplexer. Refer to Figures 2-1 and 2-1a for an 8-channel system and Figures 2-2 and 2-2a for a 24-channel system.

If you have received the REV 188 -MUX board, please note the followting error on the board:

There is a missing etch on the circuit marked A5. It is near the junction of R23, C13 and R22. If R23 is to be utilized, it will be necessary to install a jumper between R22 and R23 (use circuit B1 as an example). Refer to the drawing below for the position of the missing land. You may also want to refer to the 88-MUX Silkscreen (page 49) at IC A5, zone C4, for the component layout.

2-3. 88-ADC A/D MODULE INPUT VOLTAGE RANGES

The A / D module can be set up to read the voltage ranges shown in Table 2-A by implementing the proper jumpering options. Figure 2-3, 88-ADC Silkscreen, shows the locations for the jumpering options listed. When utilizing one or more 88-MUX cards in a system, it is imperative that the selected voltage range is the same for the A / D module and the 88-MUX amplifiers. (Refer to Section 2-4.)

WARNING
When installing the jumper wires, be sure not to short any
lands together or form solder bridges.

Table 2-A. A/D Module Input Voltage Ranges

A/D MODULE INPUT VOLTAGE RANGE	J1	J2	J3	J4	J5	Additional Procedures
UNIPOLAR						
0 T0 +5v		X	x		x	
0 T0 +10v		X	χ			
BIPOLAR						
$\begin{aligned} & -5 \text { TO +5v } \\ & \text { (Std. Config.) } \end{aligned}$		X		X		
$\begin{aligned} & \text { - } 10 \text { TO +10v } \\ & \text { (No MUX) } \end{aligned}$	X	X		x		$\underset{\text { D } 1}{\text { Drill out }}$
$X=$ JUMPER INSTALLED						

NOTE
J3 and 34 jumpers have a common pad labelled $J 3 / J 4$ on the board. Only one end of $J 5$ is labelled. The other end of $\mathrm{J5}$ is found directly to the right of the square pad going to the A/D module, pin 6.

Figure 2-3. 88-ADC Silkscreen (Jumper Locations)

2-4. 88-ADC INPUT RANGES USING MULTIPLEXERS

The standard configuration of both types of multiplexers provides for the ($-5 v$ to $+5 v$) voltage range at each amplifier input. Other input ranges can be set up by selecting the proper resistor values on the multiplexer. Either multiplexer is capable of processing signals over a maximum 15 v range. Table 2-B lists the possible ranges and the corresponding resistor changes.

Table 2-8. 88-ADC Input Ranges Using Multiplexers

88-ADC INPUT VOLTAGE RANGE	$\begin{aligned} & 24 \text { Channel MUX } \\ & \text { (88-MUX) } \end{aligned}$		$\begin{aligned} & 8 \text { Channel MUX } \\ & (88-A D C) \end{aligned}$	
	$R 135$	R138	R26	R24
UNIPOLAR				
0 TO +5v	5.2K	4.3K	180ת	6.8K
0 TO +10v				
BIPOLAR				
$\begin{aligned} & -5 \text { TO }+5 v \\ & \text { (Std. Config.) } \end{aligned}$	18.2K	Not Used	1 K	2.2K

Since both multiplexer systems are limited to a maximum input voltage range of 15 volts, the (-10 to $+10 v$) range cannot be multiplexed directly. There are two methods that can be implemented to handle this range. First, the A / D module can convert over this entire voltage range without multiplexing if the signals are input via pins 1 and 2 on connector P1 (or an external multiplexing system can interface at this point). The second method is to scale down all voltages accordingly, using an 88-MUX based system. For example, if the input voltage divider network resistors of an 88-MUX card are properly chosen, an external signal range of (-10 v to +10 v) will appear as a (-5 v to +5 v) range to the 88-ADC card.

The following example references components on an 88-MUX card amplifier \#1. Refer to the 88-MUX schematic, Figure 3-3, at the end of Section III. Use the formula for a voltage divider:

$$
V_{\text {OUT }}=V_{I N}\left(R_{3}\right) /\left(R_{3}+R_{4}\right)
$$

Scaling down the input voltage range will always reduce accuracy by an appropriate factor. In many cases, however, the increase in allowable voltage span will more than compensate for this error.

Example 1: Suppose a (-20 v to +20 v) span is desired. Scaling by a factor of 4 will give the best accuracy over the total range.
Voltage Divider Formula: $V_{\text {OUT }}=V_{I N}\left(R_{3}\right) /\left(R_{3}+R_{4}\right)$ Desired Voltage: $\quad V_{\text {OUT }}=5 v ; V_{\text {IN }} 20 \mathrm{v}$
Thus, $5=20 \mathrm{v}\left(R_{3}\right) /\left(R_{3}+R_{4}\right)$ and $1 / 4=\left(R_{3}\right) /\left(R_{3}+R_{4}\right)$
To keep the input impedance relatively high, choose $R_{3}=1$ Megohm. ($1 / 4=1$ Megohm/(1 Megohm $+R_{4}$), thus $R_{4}=3$ Megohms.) The source impedance has a significant factor on accuracy, especially as it becomes large. Referring to Figure 2-4, the \% error can be calculated as follows (neglecting amplifier loading effects):
$V_{O U T}($ theoretical $)=V_{I N}\left(R_{3}\right) /\left(R_{3}+R_{4}\right)$
$V_{\text {OUT }}{ }^{\text {(actual) }}=V_{I N}\left(R_{3}\right) /\left(R_{3}+R_{4}+R_{S}\right)$
where R_{s} is the source impedance.

Figure 2-4. \% Error In Scaling

can be stated as follows:

Thus, the \% error introduced to the system by adding a scaling network

$$
\text { \% error }=\left(\frac{\mid V_{\text {OUT }}(\text { theoretical })-V_{\text {OUT }}(\text { actual }) \mid}{\mid V_{\text {OUT }}(\text { theoretical }) \mid}\right)^{\times 100}
$$

and from Example 1,
$V_{\text {OUT }}($ theoretical $)=20$ volts $(1$ Megohm $) /(1$ Megohm +3 Megohm $)=5 \mathrm{v}$
$V_{\text {OUT }}($ actual $)=20$ volts $(1$ Megohm $) /(1$ Megohm $) /\left(1\right.$ Megohm +3 Megohm $\left.+R_{s}\right)$
$=20$ volts $(1$ Megohm $) /\left(4\right.$ Megohm $\left.+R_{s}\right)$
Thus, the \% error $=\left(\frac{\left.5 \text { volts }-20 \text { volts (1 Megohm)/4 Megohm }+R_{s}\right) \mid}{\mid 5 \text { volts } \mid}\right) \times 100$
and if $R_{s}=10$ ohms, then \%error $=.00025 \%$
$R_{s}=100$ ohms, then \% error $=.0025 \%$
$R_{s}=1000$ ohms, then \% error $=.025 \%$
The A/D module error is $.0244 \%$. The total board error is the sum of the module error plus the scaling error. For this example, as R_{s} becomes larger than 100 ohms, the source impedance causes an increasingly significant portion of the total board error.

Generally, the lower the source impedance or the higher the scaling resistors, the smaller the \% error factor. Beyond a certain point, however, an increase in scaling resistor impedance will begin to introduce noise. 10 Megohms is the largest recommended value for R_{3} or R_{4}.

NOTE

The preceeding calculations are identical for scaling voltages on other amplifiers of the 88 -MUX card. R_{7} and R_{8} replace R_{3} and R_{4}, respectively, for amplifier \#2, and so on.

2-5. 88-MUX GAIN

For very small signal levels, an increase in voltage gain (unity is standard configuration) will improve the voltage span seen by the A/D module. Any gain may be specified from 1 up to 1000 by using appropriate resistor values. The channels can be set up independently for different gain factors. Gain of amplifier \#l is given by:

GAIN $=\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{R_{1}+R_{4}}{R_{1}} *$
Thus, neglecting divider effects from R_{2} and R_{3}, a value for R_{4} and R_{1} can be computed.
Example 2: If the input signal is a 10 Mv (. 01 volt) level, a factor of 1000 will increase the signal to 10 volts. (Gain factors larger than 1000 are not recommended.)
Thus, $1000=\frac{R_{1}+R_{4}}{R_{1}}$

$$
1000 R_{1}+R_{T}=1 \text { Megohm }
$$

$$
999 R_{1}=1.00 \times 10^{6} \text { and } R_{1} \sim 1 \mathrm{Kohm}
$$

Note that R_{4} should never be greater than 1 Megohm and at this gain frequency considerations will limit the amplifier's response at around 1 KHz . (Signals changing at rates faster than this figure may be inaccurately buffered.)

Gain factoring can also be accomplished at the 88-ADC input buffer amplifier by selecting R_{3} and R_{4} in the same manner as above. All channels are affected in this case.

* Gain is unity when R_{1} is removed from the circuit.

2-6. 88-ADC INPUT BUFFER AMPLIFIER

An optional instrumentation amplifier (differential configuration) may be used in place of the input buffer amplifier which is already onboard. For small signal applications (less than 50 mv), the $88-\mathrm{ADC}$ should be specified with option \#1. The AD521 instrumentation amplifier can successfully track as low as $1 m v(.001$ volt). Capability is also provided for differential inputs by utilizing a modified 88-MUX board. The modification consists of opening up 24 drill-holes in the analog ground lines (GA1, GA2, . . . etc) and using a special interface cable (\#8810-303). By utilizing such a differential system, noise immunity may be increased significantly when rapidly changing signal levels are being read on adjacent channels.

2-7. ZERO ADJUSTMENT

For unipolar zero adjustment, follow these instructions:
a) Set a reference power supply to +0.0012 volts and connect to multiplexer channel \#0.
b) Enter Program 2-I, MUX Isolation Test (page 20), with the appropriate parameters to loop on channel \#0.
c) While Program 2-I is running, adjust pot R1 for a zero output reading.
d) Repeat steps b) and c) if necessary.

For bipolar zero adjustment, perform steps a) through d) except set the input signal level to -4.9988 volts.

Program 2-I. MUX Isolation Test
This program will read up to 96 channels with an $88-\mathrm{MUX}$ system, up to 8 channels with the on-board 8 -channel MUX, or directly through the $88-\mathrm{ADC}$ without a multiplexer. SA is the number of samples desired at each channel.

10 REM TO READ ONLY ONE CHANNEL CHANGE 70 : I = (DESIRED CH.\#) AND
20 REM DELETE STATEMENT 240
30 REM CH. \# IS THE LAST CHANNEL YOU WANT TO TEST
INPUT"ENTER VI"; VI
INPUT"'ENTER BIAS'; BIAS
INPUT"CH.\#";CN
INPUT"ENTER SAMPLES"; SA
FOR $I=0$ TO CN
PRINT:PRINT"CH.\#'"; I
FOR J=0 TO SA
OUT130,0
OUT131,255
OUT130,4
0 OUT128,0
120 OUT128,255
130 OUT128,4
140 OUT134,0
150 OUT135,0
160 OUT134, 4
170 OUT132,0
180 OUT133,0
195 OUT132,4
200 OUT131,I:OUT129,I
$210 \mathrm{MS}=\operatorname{INP}(133): L S=I N P(135)$
$220 \mathrm{~V}=((16 * \mathrm{MS}+((\mathrm{LS} / 16)$ AND 15) $) * V I / 4095)-$ BIAS
230 PRINTV;
235 NEXT J
240 NEXT I

SELECTED V. SPAN	$\mathrm{VI}=$	BIAS $=$
$0-5 \mathrm{v}$	5	0
$0-10 \mathrm{v}$	10	0
$-5-5 \mathrm{v}$	10	5
$-10+10 \mathrm{v}$	20	10
No MUX		

2-8. SOFTWARE

The 88-ADC board can be utilized in one of several different configurations. Depending on system requirements, one configuration may have considerable advantages over another. Two easily implemented schemes (A and B below) are briefly presented in this section to aid the user in selecting the most useful configuration for his particular system.

Note that in both methods it is possible to configure the board to handle interrupts following the normal jumpering scheme for vectored interrupt lines. The interrupt can be generated from the $88-A D C$ module itself or from an external piece of equipment with a "trigger" signal.

A. Standard Configuration

This method is employed more often since it is more versatile in application, especially for persons programming in BASIC. It is applicable to all systems not requiring synchronization to an external event. If the system program is written entirely in BASIC (no machine language), Program 2-I can be utilized. The advantages of Program 2-I include ease of programming and debugging. The major disadvantage is speed (maximum sample rate between samples is almost one second). For many applications, this sample rate is too slow and a high speed program would be more useful.

Three possible variations (listed below) can be implemented with this method. Sample Programs 2-II through 2-V contain the necessary information to apply any of these approaches to a particular system. These sample programs are found on pages 24 through 31.

1. a true "machine" language program which is fast but more complex to write, especially if data manipulation must be done in this form
2. a "hybrid" program written in BASIC which accesses a USR (usercalled) machine language "acquisition" program
3. "real-time" output to a smart terminal

Utilization of the machine language acquisition results in a maximum sample rate of approximately 65 microseconds. Sample Program 2-II is an example of the first variation (without data manipulation) and Sample Program 2-III is an example of the "hybrid" version of Program 2-II.

In both sample programs (2-II and 2-III), approximately 45 microseconds are used for storage of each data sample (two bytes), followed by the start of the next conversion, and "housekeeping" functions (i.e. checking if the data block is filled). This leaves only 20 microseconds for data manipulation if the maximum A / D rate is to be maintained. Thus, the second variation (hybrid) is probably more versatile since the maximum sample rate is maintained and data manipulation is more easily handled in BASIC.

If the third approach is implemented, interrupt flag IRQA may be useful. The terminal must be able to interpret which of the two bytes are LSB/MSB. Also, in a steady output stream, the terminal should know which bytes link together to form one sample.
B. Synchronous Mode

The second method utilizing the 88-ADC makes use of an external event or "SYNC" pulse to initiate each conversion, thus "slaving" the 88-ADC to an external "trigger" signal. Only one conversion is complated for each trigger pulse, eliminating the processing time during intervals of irrelevant data. This occurs with a slight increase in the maximum acquisition rate, approximately 78 microseconds between samples.

To implement this scheme, the status of the IRQ flags are monitored without allowing another start until the in-process conversion has been completed. The external trigger for CB1 is input via P1 pin 9 and should be standard logic levels (LOW $\leqslant .9$ volts, HIGH ~ 2 volts).

The Std. Config. Mode can also be initiated by an interrupt (or by doing a status check of the CB1 flag). A "burst" of data is input and handled as previously described. However, the burst may contain more data than is required, resulting in excessive handling time.

Program 2-V is the "hybrid". version of Program 2-IV.

D. Notes for Sample Programs 2-II Through 2-V
(1) START ADDRESS - These two bytes specify starting address of the data block in memory. If only one sample of data is needed, this address should be two less than the END address.
(2) END ADDRESS - This word is the MSB address byte and represents the end of the data block in memory (i.e. the last data storage address is one byte less than this address).
(3) IRQB STATUS FLAG - This word initializes PIA 1, enabling or disabling the IRQB interrupt line. It also determines the desired active transition (positive or negative going edge) of the trigger word applied to P1 pin 6. It is possible to use this word in the STD. CONFIG. mode to initiate the data acquisition and is required for proper operation in the SYNC mode. The trigger signal will affect the status flag whether the IRQ line is enabled or not.

CONTROL WORD	DESIRED TRIGGER TRANSITION	DESIRED INTERRUPT ACTION
006	+	IRQB DISABLED
004	+	IRQB DISABLED
007	+	IRQB ENABLED
005	+	IRQB ENABLED

(4) A/D MODULE STATUS FLAG - This word determines the status of the A/D module. During a conversion, the CA1 line of PIA 1 monitors the BUSY line of the A / D module which is HIGH during a conversion and LOW upon completion. If enabled, the falling edge generates an interrupt on the IRQA interrupt line. The status channel flag (bit 7) can also be monitored to verify the completion of a conversion, if desired, by using a scheme similar to the status check of channel 204 in the SYNC program (2-IV or $2-V$).

CONTROL WORD	DESIRED TRIGGER TRANSITION	DESIRED INTERRUPT ACTION
004	ψ	IRQA DISABLED
005	ψ	IRQA ENABLED

1st Half of Sample Programs 2-II and 2-IV. A/D Block Storage Program

OCTAL		DECMMAL		Op. Code (0ctal)	Corments
Address	Data	Address	Data		
(037) $\begin{array}{r}100 \\ 101 \\ 102\end{array}$	$\left[\begin{array}{l}001 \\ \hline 1000 \\ 040\end{array}\right]$	$\begin{aligned} & 8000 \\ & 8001 \\ & 8002 \end{aligned}$	1 0 32	$\left[\begin{array}{l} \text { LXIB } \\ \\ \hline \text { DATA } \end{array}\right]$	Setup start address of stored block of data.
103 104 105	076	8003 8004	62	LDA	-
104	000 323	88004	211	[0]	
106	[200]	8006	128	CH. 200	
107	323	8007	211	OUT	
110	[202]	8008	130	CH. 202	Pre-initialize
111	323	8009	211	OUT	PIAs and define
112 113	[204]	88011	132	${ }_{\text {CH. }}{ }_{\text {OUT }}$	as input/out?ut
114	[206]	8012	134	CH. 206	
115	323	8013	211	OUT	
116	[205]	8014	133	CH .205	
117	323	8015	217	OUT	
120	[207]	8016	135	CH. 207	
121	076	8017	62	LDA	
122	377	8018	255	[377]	
123	${ }^{323}$	8019	211	$\mathrm{CuT}_{\text {C4, }}$	
125	323	8021	211	OUT	
126	[203]	8022	131	CH. 203	1
127	076	8023	62	LDA	Sets up PIAd (A)
130	004	8024	4	[004]	section for 8-
131 132 1	323 202	3025 3026	211 130	OUT 202	channe] MUX ad- dress (if used).
133	076	8027	62	LOA	Sets up PiAd so
134	054	8028	44	[054]	C31 line puises
135	323	8029	211	OUT	1 each time CH .
136	200	8030	128	CH .200	201 is cutput.
137	076	8031	62		Sets up PIAT Tor
140	(3) 004	8032	4	[004] 3 3	status/interrupt
141	323	8033	211		flag in (B) section from pl oin (
142	204 076	3034 8035	132 62	${ }_{\text {CH. }} \mathbf{2 0 4}$	from 9 ¢ 1 din 9 (1 for
144	(4) 004	8036	4	[004]. (4)	status/interrupt
145	323	8037	211		flag in (A) section
146	206	8038	134	CH. 206	
147	076	8039	62	LDA	Selects one of eignt
150	(5) [000]	8040	0	[000] (5)	Mux channeis from
151	323	8041	211		on-board MUX (if
152	203	8042	131	CH. 203	used).

At this point, initialization is complete. The remainder of the program must be selected as either STD. CONFIG. Mode (A), Program 2-II or SYNC Mode (B), Program 2-IV.

2nd Half of Sample Program 2-IV. A/D Block Storage (SYNC Mode)

A/D BLOCK STORE (cont.)

OCTAL		DECTMAL		Op. Code (Octal)	Comments
Address	Data	Address	Data		
(037)	303	$\begin{aligned} & 8043 \\ & 8044 \end{aligned}$	$\begin{aligned} & 195 \\ & 127 \end{aligned}$	$\left[\begin{array}{c} \text { SMP } \\ \text { ADD } \\ \text { INPUT } \end{array}\right]$	Jump to status check.
	177				
	037	$\begin{aligned} & 8044 \\ & 8045 \end{aligned}$	$\begin{array}{r} 127 \\ 31 \end{array}$		
	(6) 333	$\begin{aligned} & 8046 \\ & 8047 \end{aligned}$	$\begin{array}{r} 219 \\ 135 \end{array}$		Read (LSE) data byte
	207			INPUT $\mathrm{CH} .207 \text { (A) }$	and store.
	(8) 002	8048	2	STAX B	
	003	8049	3	INCR B	Increment store address.
	333	$\begin{aligned} & 8050 \\ & 8051 \end{aligned}$	$\begin{array}{r} 195 \\ 133 \end{array}$	INPUT$\mathrm{CH}, 205(\mathrm{~B})$	Read (MSB) data byte
	205				and store.
	002	8052	2	$\text { CH. } 205(\mathrm{~B})$ STAX 8	Increment store address.
	003	$\begin{aligned} & 8053 \\ & 8054 \end{aligned}$	3	INCR B	
	333		195	$\begin{aligned} & \text { INPUT } \\ & \text { CH. } 204 \end{aligned}$	Check status CH. 204
	204	8055	132		(wait in loop until Bit
	027	8056	$\begin{array}{r} 23 \\ 210 \end{array}$	RAL	7 (3) set HIGH).
	322	8057			
	166	8058	110	[ANC.]	
	037	8059	118		
	076		62	LDA 000$]$ (7)	
	(7) 000	8061	$21{ }^{\circ}$		Strode A/D ror next converston. (Also set
	323	8062		[000] (7) OUT	1 of 24.88 -MUX channels, if used)
	201	8063	1211	CH. 201	
	076	$\begin{aligned} & 8064 \\ & 8065 \end{aligned}$	6264	$\left[\begin{array}{l} 10 \mathrm{~A} \\ {[100]} \end{array}\right.$	
	(2) 100				address and compare to
	270	$\begin{aligned} & 8065 \\ & 8066 \end{aligned}$	64 184	СМРВ	see if block full. If
	312	8067	202	$\left[\frac{32}{4 D D .]}\right]$	full, jump to end of program.
	222 037	8069	146		
	000	8070	0		Required delay for conversion to complete. (Can be replaced with instructions to hande preyiously stored jata bytes. But instruction time total $\leq 18 \mu \mathrm{sec}$. for maximum conversion rate.
	000	8071	0		
	000	8072	0		
	000	8073	0		
	000	8074	0		
	000	8075	0		
	000	8076	0		
	000	8077	0		
(037)	000	8078 8079 8080 8081 8082 8083 8084	$\begin{array}{r} 0 \\ 195 \\ 110 \\ 31 \\ 195 \end{array}$	JMP	Last delay NOP. Now jump back to read.
	303				
	156			[ADD.]	
	037				
	${ }^{303}$			$[\text { ADO.] }$	Program end. Jump to processing program or do a return.
	[]		$\left[\begin{array}{l} 195 \\ \hline \end{array}\right.$		

2-9. MOS IC SPECIAL HANDLING PRECAUTIONS

There is one MOS integrated circuit on the 88-ADC board, IC U. The IC is very sensitive to static electricity and transient voltages. In order to prevent damage to the component, read over the following precautions and adhere to them as closely as possible. FAILURE TO DO SO may result in permanent damage to the ic.
a) All equipment (soldering-iron, tools, solder, etc.) should be at the same potential as the PC board, the assembler, the work surface and the IC with its container. This can be accomplished by continuous physical contact with the work surface, the components and everything else involved with the operation.
b) When handling the IC, develop the habit of first touching the conductive container in which it is stored before touching the IC itself.
c) If the IC has to be moved from one container to another, touch both containers before doing so.
d) Do not wear clothing which will build up static charges. Preferably wear clothing made of cotton rather than wool or synthetic fibers.
e) Always touch the PC board before touching the IC to the board. Try to maintain this contact as much as possible while installing the IC.
f) Handle the IC by the edges. Avoid touching the pins themselves as much as possible.
g) Dry air moving over plastic can build up considerable static charges. Avoid placing the IC near any such area or object.

3-1. GENERAL
Section III provides a detailed theory explanation of the circuit contained within the 88-ADC and 88-MUX boards, including a description of the logic symbols used in the schematics.

Although most applications will utilize either the 8-channel or 24channel multiplexer system, the input signal for the $88-A D C$ board can bypass the multiplexer system independently through connector PI. This section will describe how the input signal can enter directly through P1, through the 8-channel multiplexer on the 88-ADC board, or through the 24-channel 88-MUX board.

3-2. LOGIC CIRCUITS

The logic circuits used in the $88-A D C$ (Figure 3-2) and $88-M U X$ (Figure 3-3 and 3-4) schematics are presented in Table 3-1. The table provides the functional name, symbolic representation and brief description of each logic circuit. Where applicable, a truth table is furnished to aid in understanding circuit operation. The active state of the inputs and outputs of the logic circuits is graphically displayed by small circles. A small circle at an input to a logic circuit indicates that the input is an active LOW; that is, a LOW signal will enable the input. A small circle at the output of a logic circuit indicates that the output is an active LOW; that is, the output is LOW in the actuated state. Conversely, the absence of a small circle indicates that the input or output is active HIGH. Note that LOW active signals are written with a bar on top and the absence of such a bar signifies an active HIGH signal level.

Table 3-A. Symbol Definitions (Contd)

NAME	LOGIC SYMBOL	DESCRIPTION
Jual Retriggerable Monostable Multivibrator		A monostable multivibrator has but one stable state from which it can be triggered to change states for a predetermined interval. External capacitance and resistance are selected to achieve a desired pulse width. Retriggerable means that before the output pulse is terminated, the input can be triggered again, allowing output pulses of long durations. The A input must go LOW while the B input is held HIGH to initiate an output pulse.
$\begin{aligned} & \text { J-K Dual } \\ & \text { Flip-Flop } \\ & \text { with Clear } \end{aligned}$		The output of this flip-flop can be modified by conditioning the J and K inputs HIGH or LOW. Data is transferred to the output on the falling edge of the clock pulse. The CLEAR (CLR) input overrides the CLOCK (CLK) and DATA inputs and sets the Q output LOW.

3-3. 88-ADC INPUT BUFFER AMPLIFIER (Figure 3-2)

The input signal origin for the $88-A D C$ is through connector $P 1$, pins 1 and 2 (zone D3). (P1 pin $1=(+$) input, and P1 pin $2=$ ground.) The voltage gain from the buffer amplifier (IC B, zone $C 3$) is given by the ratio $V_{\text {OUT }}=V\left(R_{3}+R_{4}\right) / R_{3}$ and is strictly a function of R_{3} and R_{4} where $V_{\text {OUT }}=$ voltage out of amplifier (IC B) pin 6 and $V=$ voltage present at pin 3. If R_{3} is not installed, the gain will be unity which is the standard configuration. Input scaling can be realized by proper selection of R_{5} and R_{6} as given by $V=V_{I N}\left(R_{5}\right) /\left(R_{5}+R_{6}\right)$ where $V_{\text {IN }}=$ voltage at $P 1$ pin 2 and $V=$ voltage at amplifier (IC B) pin 3. R_{5} and C7 can be selected to provide the desired roll-off response.

3-4. A/D MODULE (Figure 3-2)

The A/D module (see Figure 3-1, A/D Module Internal Block Diagram) is operated as a successive approximation register with the following internal sections: clock, binary counter/shift register (CSR), digital to analog converter (DAC) and comparator circuit. On the leading edge of a positive going START conversion pulse pin 34 (zone C5), the BUSY signal pin 33 is latched and the most significant bit (MSB) pin 72 (zone C4) of the (CSR) is set up to be tested first. The MSB is set True, resulting in a corresponding (DAC) output. The DAC provides an analog output voltage which is dependent on the binary code input. This analog voltage output is compared to the input signal within the comparator and a digital True (1) or False (0) signal is clocked into the proper bit location in the (CSR) register. The process is then repeated, using the next most significant bit. This results in a string of True or False binary weighted bits which are shifted into the register until the least significant bit (LSB) has been "tested" and the comparator toggles True. Completion of the (LSB) test indicates "equality" of the digitally encoded DAC output and input signals. Once the LSB has been "tested," the BUSY signal goes LOW and the digitally coded voltage may be read as valid. Note that during "conversion" time, the data output lines will be toggling back and forth between HIGH and LOW states and will not be stable until after the LSB has been tested and the BUSY signal goes LOW.

NAND gate G pin 11 and pin 8 (zone B6) generate input or output signals to or from the CPU, respectively. These signals are used to enable the bus output drivers S and P (zone A5 and A4) and input drivers S and R (zone A3). They are also used to strobe the R/W lines on PIAs M and N pins 21 (zone B4 and B3, respectively). The R/W line determines in which direction data will flow through the PIA. The output of G pin 6 (zone B6) sets the CSI control lines HIGH on PIA-M and PIA-N pin 24 on either an input or an output and this enables the PIA.

Upon receiving a Read command, the PDBIN signal is inverted to the input of NAND gate G pin 1 (zone B6). With a Write, the $\overline{P W R}$ signal goes directly to input pin 2 of G. The output of G pin 3 strobes the "E" lines pin 25 of the PIAs with a positive going pulse. The "E" pulse strobes data or control signals into the PIA internal registers.

A WAIT state must be introduced during an input to the CPU from the 88-ADC because of the inherent slowness of the PIA latches as compared to the CPU speed. This is accomplished by ICs G, E, F and H. When the E flip-flop (zone C6) is set HIGH, the \bar{Q} output pin 13 goes LOW, causing PRDY to remain LOW and a temporary HALT in processing occurs. The PWAIT line, returning from the CPU, will be set HIGH after one WAIT state (500 ns.) This clears the E flip-flop through ICs F and H (zone C7) and processing resumes.

The E flip-flop and PIAs M and N are also cleared with a Power-On Clear ($\overline{\mathrm{POC}}$) command from the CPU card during the power up condition. The lower order address lines $A \emptyset$ (LSB), A1 and A2, which comprise the last byte of the channel address, are decoded by PIAs M and N to provide the access pattern shown in Table 3-C. For example, an output command to channel 131 would decode lines $A 2=$ LOW, $A T=H I G H$ and $A O=H I G H$. Thus, PIA-N, Section A, Data Channel is selected.

Table 3-C. Channel Address vs. PIA Enables

	(스) PIA \varnothingEnabledBinary Address Code		```(A2) PIA 1 Enabled Binary Address Code```	
	($\overline{\text { T }}$) Section B	(A1) Section A	($\overline{\text { T }}$) Section B	(A1) Section A
(A®) Status Channel Binary Address Code*	128	130	132	134
(AD) Data Channel Binary Address Code*	129	131	133	135

*Decimal Address

To begin conversion, the D one-shot (zone C6) is used to generate the START pulse to the A / D module. The standard configuration of the 88-ADC board uses the CB2 line pin 19 (zone B2) of PIA-N to strobe the D one-shot. The proper initialization codes (Program 3-I, page 43) must be received by the PIA.

These codes may be modified as described within the sample program in Section 2-8, although the START pulse always consists of a LOW going transition of CB2.

The START signal can generate one BEGIN CONVERSION command (100ns minimum), but the conversion must be completed and processed before another pulse is applied. The time is dependent on the software being utilized, from $\sim 65 \mathrm{usec}$. in STD. CONFIG. up to $\sim 1 \mathrm{sec}$. using BASIC only. The STATUS line (Pl pin 8) can be monitored, indicating whether the A / D module is busy or ready to accept another conversion command. However, software processing is asynchronous to the hardware STATUS signal so caution is advised for real time high speed operation. For true monitor capability, the card can be set up as described in Section 2-8(B), Synchronous Mode.

[^0]The binary address code for the desired multiplexer channel is latched by PIA-N. The MAD through MA7 signals (zone B2) can be set to 0 or 1 by generating the proper output code (Table 4-A, page 55) to the PIA. These signals are output on connector P1 for use by the $88-\mathrm{MUX}$ card(s).

The PAD, PA1 and PA2 signals (zone B2) are generated in a similar manner to MAD through MA7 and these are input to the 8-channel multiplexer, IC U, on the $88-A D C$ board. These signals from $P A D, P A 1$ and PA2 select one of eight input channels, AXO through AX7, which are input via connector P2 (refer to Table 4-B, page 63). Input protection for the 88-MUX is provided by diodes D1 through D16 (zone D1), resistors R16 through R23 (zone D2), resistors R24 through R28 and transistor Q2. Voltages larger than the supply voltages for the multiplexer IC U are "clamped" by this circuitry.

3-6. 88-MUX 24-CHANNEL MULTIPLEXER (Figure 3-3)

The CMOS 4051 Multiplexers (zones B7, B5 and B2) are controlled by means of the A, B, C and $E N$ inputs. MUX-A is enabled for channels 0 through 7, MUX-B is enabled for channels 8 through 15, and MUX-C for channels 16 through 23. The $\overline{E N}$ signal pin 6 allows coupling of one of eight channels through the proper MUX IC to its output pin 3 . Pins 3 of the three multiplexer ICs A, B and C go directly to the output buffer amplifier and to Pl pin 5, the MUX 1 output signal. The A, B and C signal pins 11,10 and 9 , respectively, select the binary code for the particular channel desired. Refer to the table in Figure 3-4, zone Bl and B2.

3-7. PIA INITIALIZATION AND DATA INTERPRETATION

It may also be useful to refer to Section 2-8 before reading this section.

In order to read the 88-ADC card, the PIAs must be initialized for data flow direction and control signal flags. Program 3-I is an example of 8 K BASIC PIA initialization for an 88-ADC board strapped at channe 1
128. Note that the channel and data numbers are in decimal.

After processing lines 80 through 190, initialization is complete and the multiplexer channel can be set up as follows:

> 8-Channel MUX 24-Channel MUX

200 OUT 131, CH. CH. $=(0-7):$ OUT 129, CH. CH. $=(0-96)$ The second half of statement 200 (OUT $129, X$) also strobes the A / D module to begin a conversion. After approximately 50 microseconds, the conversion is complete and the A / D module is waiting to be read by the CPU:

210 MS = INP (133) : LS = INP (135)
The first instruction reads the eight most significant bits, the second reading the four least significant bits. By adding the voltage factors for the four least significant bits with masking and "weighting" the following statement can be written:
$220 \mathrm{~V}=((16 \star M S+((L S / 16)$ and 15$) * V I / 4095)-$ BIAS
where VI $=$ input voltage $\operatorname{span}(5,10$ or 20 volts) and BIAS $=0$ for unipolar, 5 for (-5 to +5 volts) or 10 for (-10 to +10 volts). Statement 220, when combined with statement 210 , will calculate an equivalent voltage (V) corresponding to the total bit count and total voltage span desired. For example, for a (0 to +10 volt) range, $V 1=10.0$ and BIAS $=$ 0 , and the voltage in volts is read out directly.

For only eight significant bits, statement 220 can be rewritten as follows:
$220 \mathrm{~V}=(16$ * MS * VI/4095) - BIAS
resulting in a corresponding increase in processing speed due to the fact that only one input instruction is required and the computations are greatly simplified.

4-3. GENERAL CHECK
The following items are important factors to be considered when troubleshooting the overall system:
a. Has the system worked previously?

A PC assembly error (such as a solder short) is less probable for a setup that has operated prior to this check, unless the board has since been modified.
b. Does the program match the system configuration?

Note that depending on whether the 8 -channel or 24 -channel MUX is accessed, the program contents are slightly different. Also, is the addressing of the A / D correct?
c. Improper voltages?

Too high a voltage will saturate the input buffer amplifier. If the A / D card is jumpered incorrectly, the A / D module itself can be saturated, resulting in an unvarying output near full scale. "Floating" inputs to the 8-channel MUX will also appear as saturated. If this is an undesirable feature, unused inputs to the cable should be grounded. Also, note that time-variant voltages can cause unusual results since the computer runs asynchronous to them.
d. Is the problem on one oll channels?

This is a very significant factor when troubleshooting. All channels except one, point strongly toward the multiplexer section rather than the A / D.
e. UNDER NO CIRCUMSTANCES SHOULD THE A/D MODULE ITSELF BE TAMPERED WITH.

If the module is suspect, please return the entire card with a description of the problem for a complete factory checkout.

4-4. PRELIMINARY CHECK

After visual inspection and installation of the board(s), check the address and data lines for shorts and opens. All the preliminary checks are implemented with the machine On and in the Stop mode. Each of the 16 address switches on the front panel should be in the down position initially and switched to the up position individually while positioning the EXAMINE/EXAMINE NEXT* switch on the front panel to EXAMINE for each address switch setting. Observe that the corresponding $L E D$ is $O n$. After all the switches are up, return them individually to the down position, and observe that the adjacent LED is OFF. If one LED fails during this check, or if several LEDs fail at the same time, there are possible address problems on the board(s). The board should be removed and a resistance check made on the bus pins corresponding to the address lines showing the incorrect indications. If the resistance reading indicates there is a short or open in the circuit, trace the land from the bus until the problem is isolated.

Data lines are checked in much the same manner. Address switches AD-A7 correspond to data lights $0 \emptyset-D 7$. These address switches are initially in the down position. Place AD up and position DEPOSIT/ DEPOSIT NEXT** switch on the front panel to DEPOSIT and observe that the $\mathrm{D} \emptyset \mathrm{LED}$ is On . Place each of the address switches individually HIGH while positioning DEPOSIT/DEPOSIT NEXT switch on the front panel to DEPOSIT NEXT and observe that each corresponding LED comes On. Return all front panel address switches to the LOW position. Position EXAMINE/ EXAMINE NEXT switch on the front panel to EXAMINE to recall data stored in the first address. Repeatedly place the EXAMINE/EXAMINE NEXT switch on the front panel to EXAMINE NEXT. This will enabie the machine to read the data that was stored in the successive memory locations to verify data was deposited.

If one LED fails during this check, or if more than one LED fails at the same time, there is a possible data problem on the board(s). * If the board(s) is being used with the 8800a, the front panel will read EX NEXT.
** If the board(s) is being used with the 8800 b , the front panel will
read DEP NEXT.
E8-ADC \& MUX
April, 1977

4-5. MUX ISOLATION TEST (8 Channel or 24 Channel MUX System)
a. Remove the 8800-302 cable from the 88-ADC connector Pl if a 24-channel system ($88-\mathrm{MUX}$) is utilized. For an 8 -channel multiplexer system, remove IC U from the 88-ADC board. Refer to the CMOS Special Handling Precautions on page 32.
b. Connect a stable voltage source, preferably a flashlight battery (1.5 volt), between pins $7(+)$ and 2 (gnd) of connector PI.
c. Enter Program 4-I to loop on one channel.

Program 4-I. MUX Isolation Test

This program will read up to 96 channels with an 88 -MUX system, up to 8 channels with the on-board 8 -channel MUX, or directly through the $88-A D C$ without a multiplexer.

 SA is the number of samples desired at each channel.10 REM TO READ ONLY ONE CHANNEL CHANGE $70: I=$ (DESIRED CH.*) AND
20 REM DELETE STATEMENT 240
REM CH.\# IS THE LAST CHANNEL YOU WANT TO TEST INPUT'ENTER VI";VI
INPUT"ENTER BIAS";BIAS
INPUT"CH.\#";CN
INPUT"ENTER SAMPLES";SA
$\mathrm{I}=0$
PRINT: PRINT"CH.\#'; I
FOR $\mathrm{J}=0$ TO SA
OUT130,0
90 OUT131,255
100 OUT130,4
110 OUT128,0
120 OUT128,255
130 OUT128,4
140 OUT134,0
150 OUT135,0
160 OUT134,4
170 OUT132,0
180 OUT133,0
195 OUT132,4
200 OUT131, I:OUT129,I
$210 \mathrm{MS}=\operatorname{INP}(133): \mathrm{LS}=\mathrm{INP}$ (135)
$220 \mathrm{~V}=((16 * \mathrm{MS}+((\mathrm{LS} / 16)$ AND 15) $) * V I / 4095)-$ BIAS
230 PRINTV;
235 NEXT J
OK

SELECTED V. SPAN	$\mathrm{VI}=$	BIAS $=$
J-5v	5	0
$0=10 \mathrm{v}$	10	0
$-5-5 v$	10	5
$\begin{gathered} -10^{-2}+10 \mathrm{v} \\ \text { No MUX } \end{gathered}$	20	10

d. If the computer now prints the correct answer, the problem. is within the cable, the multiplexer itself or the channel code output by the $88-A D C$ to the $88-M U X$.
For problems related to the multiplexer, proceed to the following sections, depending on which system you have:
8-Channel system - Section 4-15
24-Channel system - Section 4-6
e. If the computer still does not print the correct answer, proceed to Section 4-10. This section is concerned with problems relating to the A / D module.

4-6. CABLE CHECK (24-Channel System)
a. Visually check the cable assembly carefully for misalignment and make sure it is firmly seated. Refer to Figure 2-2a, 24channel MUX Cable Layout (page 12).
b. Check for broken or bent pins (shorts) and broken wires.

WARNING
Pins on this connector are fragile and will
break if improperly handled.
c. It may be necessary to remove and re-seat the connector and repeat Program 4-I.

4-7. A/D CHANNEL CODE CHECK
If the system still fails, the A/D channel code must be checked. These signals (MAD through MA7) are output from the $88-A D C$ (IC N) as standard logic levels and should follow the standard binary code which is dependent on the channel number input to Program 4-I.
a. Referring to Table 4-A, check these signals at the 100 -pin edge connector on the top of the 88 -MUX card.
b. If the code is correct, proceed to Section 4-8.
c. If the code is not correct, substitute IC M for IC N.
d. If the code is now correct, replace the bad PIA. If the code is still incorrect, refer to Section 4-13, PIA Check.

U			Table	e 4-A. Bi	inary Chan	nne1 Code			
	$\begin{aligned} & \text { SELECTED } \\ & \text { CHANNEL \# } \end{aligned}$	$\begin{gathered} \text { MAD } \\ \text { (pin 16) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { MAT } \\ (\text { pin 17) } \end{array}$	$\begin{array}{\|c\|} \hline \text { MA2 } \\ (\text { pin } 18) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { MA3 } \\ (\mathrm{pin} 20) \end{array}$	$\begin{array}{\|c} \text { MA4 } \\ (\operatorname{pin} x) \end{array}$	$\underset{(\text { pin } V)}{\text { MA5 }}$	$\underset{(\operatorname{pin} U)}{M A 6}$	$\stackrel{\text { MAT }}{\left(\operatorname{pin}^{2} T\right)}$
	0	L	L	L	L	L	L	L	L
	1	H	L	L	L	L	L	L	L
	2	L	H	L	L	L	L	L	L
	3	H	H	L	L	L	L	L	L
	4	L	L	H	L	L	L	L	L
	5	H	L	H	L	L	L	L	L
	6	L	H	H	L	L	L	L	L
	7	H	H	H	L	L	L	L	L
	8	L	L	L	H	L	L	L	L
	9	H	L	L	H	L	L	L	L
	10	L	H	L	H	L	L	L	L
	11	H	H	L	H	L	L	L	L
C	12	L	L	H	H	L	L	L	L
	13	H	L	H	H	L	L	L	L
	14	L	H	H	H	L	L	L	L
	15	H	H	H	H	L	L	L	L
	16	L	L	L	L	H	L	L	L
	17	H	L	L	L	H	L	L	L
	18	L	H	L	L	H	L	L	L
	19	H	H	L	L	H	L	1	L
	20	L	L	H	L	H	L	L	L
	21	H	L	H	L	H	L	L	L
	22	L	H	H	L	H	L	L	L
	23	H	H	H	L	H	L	L	L
	Correspondin Signal Names	A	B	C	BEN	CEN			
$\begin{aligned} & H=H I G H \text { level }(\text { True })=+(2-4) \text { v.D.C. } \\ & L=\text { LOW level (False) }=+(.2-.6) \text { v.D.C. } \end{aligned}$									
C.									

4-8. 88-MUX CHECK (4051)
If the channel code is correct, and the problem has been isolated to the 88-MUX, it is necessary to check the multiplexer ICs A, B and C.
a. By repeating Program 4-I and referring to Table 4-A, the correct code should be seen on each multiplexer IC (A, B or C).
b. Depending on the channel group selected, only one MUX IC should have pin 6 LOW (enabled). The other multiplexer ICs (pin 6) should be HIGH (disabled).
c. Pins 9,10 and 11 should correspond to inverted signals A, B and C as shown in Table 4-A.
d. If these codes are correct, proceed to Section 4-9.
e. If these codes are not correct, replace ICs G, F or E. Insure that the connector is properly seated and aligned and that all wires are intact.

4-9. 88-MUX INPUT BUFFERS

The final check of the 88-MUX is the input buffer itself. Note that there are 24 identical amplifier circuits which are "on line" at all times. The outputs of each group of 8 terminate at MUX A, B or C.
a. Each buffer circuit can be monitored at its respective MUX IC pin $(1,2,4,5,12,13,14,15)$ by applying input signal voltages to the cable. Failure at any pin isolates that particular buffer circuit.
b. After isolating the respective buffer circuit, check for correct signal level at input pin 3 of the appropriate (741) operational amplifier.
c. If the signal is not present, check the cable and connector for the respective buffer circuit to locate a possible break or short.
d. If the signal is present but the amplifier does not output the correct level, check for bent or broken components on the respective buffer circuit.
e. If the failure is still present, replace the (741) amplifier.

This completes the 24 -Channel MUX troubleshooting section.

4-10. POWER SUPPLY VOLTAGES ON THE 88-ADC BOARD
The problem is possibly on the 88-ADC. It is first necessary to check the supply voltages.
a. Monitor the following voltages directly on the A / D module pins, being careful not to short any wires together.

Voltages A/D Module Pins
$+5 v \pm .5 v D C \quad$ pin 29
$+12 v \pm .5 v D C \quad$ pin 27
$-12 v \pm .5 v D C \quad$ pin 25
b. If the voltages are correct, proceed to Section 4-11.
c. If the voltages are not correct, check for 88-ADC board wisalignment, power supply failure or regulator failure (79M12, 78L12 or 7805).

4-11. A/D MODULE START PULSE
If the power supply voltages are correct, check the A/D START signal with a scope.
a. IC D pin 13 should pulse HIGH for approximately 150 ns each time the $88-A D C$ board is read by Program 4-I (loop on one channel).
b. The output pulse should be measured on the A / D module pin 34.
c. If the pulse is correct, proceed to Section 4-12.
d. If the output pulse is missing, check the input of IC D pin 1 for a LOW going pulse occurring at each program.
e. If the input pulse is present but the output pulse has improper timing, replace or check R9, C9 or IC D.
f. If the input pulse is missing, substitute IC M for IC N and look for the proper input pulse at 1.
g. After performing step (f), a good pulse indicates a bad PIA-N or poor contact in the socket. If this is not the case, refer to Section 4-13, PIA Check.

4-12. INPUT BUFFER CIRCUIT
a. Connect a stable voltage, preferably a battery, to connector Pl pin 2 (+) and pin 1 (and).
b. The input buffer IC B should track the battery voltage. The Ag-ACC $\frac{3}{3}$ ind output should appear at IC B pin 6 . April, 1977
c. Improper tracking indicates a bad input buffer or shorted/ broken resistors R3, R4, or R6.
d. Voltage present at this point follows through jumpers Jl and J5. Refer to Table 4-A.
e. Insure that the voltage level is within the acceptable range for the jumpering scheme being used.
f. If the signal level at the module input pin is correct and the problem still persists, proceed to Section 4-13.

4-13. PIA CHECK
The following checkout procedure assumes that the A / D module has correct voltages present at the power supply pins and tracks the input voltage correctly at module pins 5 or 6 . It also assumes negative results when IC M is substituted for IC N if there is an improper channel code or missing A/D strobe.
a. Insure that input and supply voltages are present. Temporarily ground pin 1 of IC D and check for a HIGH at pin 2 of IC D and run Program. 4-I. This should force one conversion pulse to the 88-ADC.
b. If PIA-M and its associated control circuitry is functioning properly, the computer should print the correct voltage for one trial each time pin 1 is grounded. If the card now prints the correct voltage, IC M is probably working correctly. Since IC M and IC N are similar in operation, verify that signals appearing at IC M also appear at IC N. Verify the following connections from PIA-M to PIA-N, respectively. Read the resistance with an ohmmeter by placing the probe tips on the IC pin itself.

IC M		IC N
pin 21	to	pin 21
pins 24-36, respectively	to	pins 24-36, respectively
pin 23	to	pin 23

Example: There should be continuity between pin 21 on IC M and pin 21 on IC N.

2) If pin 8 does not toggle, check address jumpers and ICs J and K.
3) If $\mathrm{J8}$ toggles properly, proceed to the Output Test.
b. Output Test

1) Single step through Program 4-II and observe the following: Test Point Toggled Signal ("Actuated" State)

J8	LOW
H8	HIG

G8 LOW
R1 LOW

R15 LOW
S15 LOW
M21 LOW
N21 LOW
G6 HIGH (inverted G8)
M24 HIGH (inverted G8)
N24 HIGH (inverted G8)
2) When G8 goes LOW, data on the $O \varnothing$ through $D 7$ lines of both PIAs should correspond to the binary coded data output in location 001 of Program 4-II.
3) Change the data in this location and step through Program 4-II. Verify that the data changes correspond on pins 26 through 33 of both PIAs.
Example 1: For location 001, Data $=001$.
$D \emptyset$ line pin 33 of both PIAs should go HIGH when G8
goes LOW. All other lines (D 1 through D7) should be LOW at this time.
Example 2: For location 001, Data $=003$. $\mathrm{D} \emptyset$ and $\mathrm{D1}$ lines pins 32 of both PIAs should go HIGH when G8 goes LOW. All other lines (D2 through D7) should be LOW at this time.
4) Check Data to make sure each bit can be set HIGH and LOW independently on the output cycle of both PIAs.

d. E Pulse and WAIT State Tests

1) While running (not single stepping) Program 4-III, check for a 500 ns. HIGH pulse at G3 and pin 25 of both PIAs. If the pulse is not present, replace IC G and/or IC H.
2) Repeat step (1), utilizing Program 4-II. Check for the same pulse.
3) While running Program 4-II, check for a 500 ns . LOW pulse at E13, P13, H4, F8 (inverted) and F6.
This completes the A / D troubleshooting section.

4-15. 8-CHANNEL MULTIPLEXER SYSTEMS
a. First check the allowable input voltage ranges shown in Table 2-A, page 13. Input voltages will be "clamped" to these limits. Note that large out-of-spec voltages may damage the circuitry.
b. Check the cable inputs and note that the ground pin 25 on the DB-25 connector ($\mathrm{P} 2-6$ on the $88-A D C$) should be used as the signal reference point rather than some other system ground terminal.
c. If the voltage at any input pin of IC U is larger than either supply voltage at pin 16 or 7 , the input clamping diodes and/or associated components are not functioning properly.
d. Make sure connector P1 pins 1 and 2 are not shorted together. No external terminations should be required at Pl when using the 8-channel system.

4-76. A/D CHANNEL CODE (88-ADC)
a. Enter Program 4-I to loop on one channel and check for the correct binary code at IC U pins 9,10 and 11. Refer to Table 4-B.
Example 1: Program selection of channe1 0 forces pins 9, 10 and 11 HIGH.
Example 2: Channel 3 forces pins 10 and 11 LOW while pin 9 goes HIGH.

Table 4-B. A/D Channel Code

CHANNEL NUMBER	IC-U pin-9	IC-U Pin-10	IC-U Pin-11	SIGNAL LINE ENABLED
0	H	H	H	AXO
1	H	H	L	AX1
2	H	L	H	AX2
3	H	L	L	AX3
4	L	H	H	AX4
5	L	H	L	AX5
6	L	L	H	AX6
7	L	L	L	AX7

b. The output of IC U pin 3 should track the "enabled" signal line (AXD-AX7). Connect a stable supply (such as a 1.5 volt battery) to P 2 pin $10(+)$ and pin $6(-)$. IC U pin 3 should output a voltage corresponding to the battery voltage when channel 0 is enabled.
c. If the correct address code is seen at pins 9,10 and 11 and the input voltage is within limits (but pin 3 does not track the input signal), replace IC U. Refer to the CMOS Special Handling Precautions on page 32.
This completes the 8 -Channel Multiplexer troubleshooting.

Figure 3-2. 88-ADC Schematic

[^0]: 98-ADC \& MUX
 April, 1977

